submodule-config: verify submodule names as paths
Submodule "names" come from the untrusted .gitmodules file,
but we blindly append them to $GIT_DIR/modules to create our
on-disk repo paths. This means you can do bad things by
putting "../" into the name (among other things).
Let's sanity-check these names to avoid building a path that
can be exploited. There are two main decisions:
1. What should the allowed syntax be?
It's tempting to reuse verify_path(), since submodule
names typically come from in-repo paths. But there are
two reasons not to:
a. It's technically more strict than what we need, as
we really care only about breaking out of the
$GIT_DIR/modules/ hierarchy. E.g., having a
submodule named "foo/.git" isn't actually
dangerous, and it's possible that somebody has
manually given such a funny name.
b. Since we'll eventually use this checking logic in
fsck to prevent downstream repositories, it should
be consistent across platforms. Because
verify_path() relies on is_dir_sep(), it wouldn't
block "foo\..\bar" on a non-Windows machine.
2. Where should we enforce it? These days most of the
.gitmodules reads go through submodule-config.c, so
I've put it there in the reading step. That should
cover all of the C code.
We also construct the name for "git submodule add"
inside the git-submodule.sh script. This is probably
not a big deal for security since the name is coming
from the user anyway, but it would be polite to remind
them if the name they pick is invalid (and we need to
expose the name-checker to the shell anyway for our
test scripts).
This patch issues a warning when reading .gitmodules
and just ignores the related config entry completely.
This will generally end up producing a sensible error,
as it works the same as a .gitmodules file which is
missing a submodule entry (so "submodule update" will
barf, but "git clone --recurse-submodules" will print
an error but not abort the clone.
There is one minor oddity, which is that we print the
warning once per malformed config key (since that's how
the config subsystem gives us the entries). So in the
new test, for example, the user would see three
warnings. That's OK, since the intent is that this case
should never come up outside of malicious repositories
(and then it might even benefit the user to see the
message multiple times).
Credit for finding this vulnerability and the proof of
concept from which the test script was adapted goes to
Etienne Stalmans.
Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 09:25:25 +02:00
|
|
|
#!/bin/sh
|
|
|
|
|
2021-05-01 17:42:08 +02:00
|
|
|
test_description='check broken or malicious patterns in .git* files
|
submodule-config: verify submodule names as paths
Submodule "names" come from the untrusted .gitmodules file,
but we blindly append them to $GIT_DIR/modules to create our
on-disk repo paths. This means you can do bad things by
putting "../" into the name (among other things).
Let's sanity-check these names to avoid building a path that
can be exploited. There are two main decisions:
1. What should the allowed syntax be?
It's tempting to reuse verify_path(), since submodule
names typically come from in-repo paths. But there are
two reasons not to:
a. It's technically more strict than what we need, as
we really care only about breaking out of the
$GIT_DIR/modules/ hierarchy. E.g., having a
submodule named "foo/.git" isn't actually
dangerous, and it's possible that somebody has
manually given such a funny name.
b. Since we'll eventually use this checking logic in
fsck to prevent downstream repositories, it should
be consistent across platforms. Because
verify_path() relies on is_dir_sep(), it wouldn't
block "foo\..\bar" on a non-Windows machine.
2. Where should we enforce it? These days most of the
.gitmodules reads go through submodule-config.c, so
I've put it there in the reading step. That should
cover all of the C code.
We also construct the name for "git submodule add"
inside the git-submodule.sh script. This is probably
not a big deal for security since the name is coming
from the user anyway, but it would be polite to remind
them if the name they pick is invalid (and we need to
expose the name-checker to the shell anyway for our
test scripts).
This patch issues a warning when reading .gitmodules
and just ignores the related config entry completely.
This will generally end up producing a sensible error,
as it works the same as a .gitmodules file which is
missing a submodule entry (so "submodule update" will
barf, but "git clone --recurse-submodules" will print
an error but not abort the clone.
There is one minor oddity, which is that we print the
warning once per malformed config key (since that's how
the config subsystem gives us the entries). So in the
new test, for example, the user would see three
warnings. That's OK, since the intent is that this case
should never come up outside of malicious repositories
(and then it might even benefit the user to see the
message multiple times).
Credit for finding this vulnerability and the proof of
concept from which the test script was adapted goes to
Etienne Stalmans.
Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 09:25:25 +02:00
|
|
|
|
2021-05-01 17:42:08 +02:00
|
|
|
Such as:
|
|
|
|
|
|
|
|
- presence of .. in submodule names;
|
|
|
|
Exercise the name-checking function on a variety of names, and then give a
|
|
|
|
real-world setup that confirms we catch this in practice.
|
|
|
|
|
|
|
|
- nested submodule names
|
|
|
|
|
|
|
|
- symlinked .gitmodules, etc
|
submodule-config: verify submodule names as paths
Submodule "names" come from the untrusted .gitmodules file,
but we blindly append them to $GIT_DIR/modules to create our
on-disk repo paths. This means you can do bad things by
putting "../" into the name (among other things).
Let's sanity-check these names to avoid building a path that
can be exploited. There are two main decisions:
1. What should the allowed syntax be?
It's tempting to reuse verify_path(), since submodule
names typically come from in-repo paths. But there are
two reasons not to:
a. It's technically more strict than what we need, as
we really care only about breaking out of the
$GIT_DIR/modules/ hierarchy. E.g., having a
submodule named "foo/.git" isn't actually
dangerous, and it's possible that somebody has
manually given such a funny name.
b. Since we'll eventually use this checking logic in
fsck to prevent downstream repositories, it should
be consistent across platforms. Because
verify_path() relies on is_dir_sep(), it wouldn't
block "foo\..\bar" on a non-Windows machine.
2. Where should we enforce it? These days most of the
.gitmodules reads go through submodule-config.c, so
I've put it there in the reading step. That should
cover all of the C code.
We also construct the name for "git submodule add"
inside the git-submodule.sh script. This is probably
not a big deal for security since the name is coming
from the user anyway, but it would be polite to remind
them if the name they pick is invalid (and we need to
expose the name-checker to the shell anyway for our
test scripts).
This patch issues a warning when reading .gitmodules
and just ignores the related config entry completely.
This will generally end up producing a sensible error,
as it works the same as a .gitmodules file which is
missing a submodule entry (so "submodule update" will
barf, but "git clone --recurse-submodules" will print
an error but not abort the clone.
There is one minor oddity, which is that we print the
warning once per malformed config key (since that's how
the config subsystem gives us the entries). So in the
new test, for example, the user would see three
warnings. That's OK, since the intent is that this case
should never come up outside of malicious repositories
(and then it might even benefit the user to see the
message multiple times).
Credit for finding this vulnerability and the proof of
concept from which the test script was adapted goes to
Etienne Stalmans.
Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 09:25:25 +02:00
|
|
|
'
|
|
|
|
. ./test-lib.sh
|
index-pack: check .gitmodules files with --strict
Now that the internal fsck code has all of the plumbing we
need, we can start checking incoming .gitmodules files.
Naively, it seems like we would just need to add a call to
fsck_finish() after we've processed all of the objects. And
that would be enough to cover the initial test included
here. But there are two extra bits:
1. We currently don't bother calling fsck_object() at all
for blobs, since it has traditionally been a noop. We'd
actually catch these blobs in fsck_finish() at the end,
but it's more efficient to check them when we already
have the object loaded in memory.
2. The second pass done by fsck_finish() needs to access
the objects, but we're actually indexing the pack in
this process. In theory we could give the fsck code a
special callback for accessing the in-pack data, but
it's actually quite tricky:
a. We don't have an internal efficient index mapping
oids to packfile offsets. We only generate it on
the fly as part of writing out the .idx file.
b. We'd still have to reconstruct deltas, which means
we'd basically have to replicate all of the
reading logic in packfile.c.
Instead, let's avoid running fsck_finish() until after
we've written out the .idx file, and then just add it
to our internal packed_git list.
This does mean that the objects are "in the repository"
before we finish our fsck checks. But unpack-objects
already exhibits this same behavior, and it's an
acceptable tradeoff here for the same reason: the
quarantine mechanism means that pushes will be
fully protected.
In addition to a basic push test in t7415, we add a sneaky
pack that reverses the usual object order in the pack,
requiring that index-pack access the tree and blob during
the "finish" step.
This already works for unpack-objects (since it will have
written out loose objects), but we'll check it with this
sneaky pack for good measure.
Signed-off-by: Jeff King <peff@peff.net>
2018-05-05 01:45:01 +02:00
|
|
|
. "$TEST_DIRECTORY"/lib-pack.sh
|
submodule-config: verify submodule names as paths
Submodule "names" come from the untrusted .gitmodules file,
but we blindly append them to $GIT_DIR/modules to create our
on-disk repo paths. This means you can do bad things by
putting "../" into the name (among other things).
Let's sanity-check these names to avoid building a path that
can be exploited. There are two main decisions:
1. What should the allowed syntax be?
It's tempting to reuse verify_path(), since submodule
names typically come from in-repo paths. But there are
two reasons not to:
a. It's technically more strict than what we need, as
we really care only about breaking out of the
$GIT_DIR/modules/ hierarchy. E.g., having a
submodule named "foo/.git" isn't actually
dangerous, and it's possible that somebody has
manually given such a funny name.
b. Since we'll eventually use this checking logic in
fsck to prevent downstream repositories, it should
be consistent across platforms. Because
verify_path() relies on is_dir_sep(), it wouldn't
block "foo\..\bar" on a non-Windows machine.
2. Where should we enforce it? These days most of the
.gitmodules reads go through submodule-config.c, so
I've put it there in the reading step. That should
cover all of the C code.
We also construct the name for "git submodule add"
inside the git-submodule.sh script. This is probably
not a big deal for security since the name is coming
from the user anyway, but it would be polite to remind
them if the name they pick is invalid (and we need to
expose the name-checker to the shell anyway for our
test scripts).
This patch issues a warning when reading .gitmodules
and just ignores the related config entry completely.
This will generally end up producing a sensible error,
as it works the same as a .gitmodules file which is
missing a submodule entry (so "submodule update" will
barf, but "git clone --recurse-submodules" will print
an error but not abort the clone.
There is one minor oddity, which is that we print the
warning once per malformed config key (since that's how
the config subsystem gives us the entries). So in the
new test, for example, the user would see three
warnings. That's OK, since the intent is that this case
should never come up outside of malicious repositories
(and then it might even benefit the user to see the
message multiple times).
Credit for finding this vulnerability and the proof of
concept from which the test script was adapted goes to
Etienne Stalmans.
Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 09:25:25 +02:00
|
|
|
|
|
|
|
test_expect_success 'check names' '
|
|
|
|
cat >expect <<-\EOF &&
|
|
|
|
valid
|
|
|
|
valid/with/paths
|
|
|
|
EOF
|
|
|
|
|
|
|
|
git submodule--helper check-name >actual <<-\EOF &&
|
|
|
|
valid
|
|
|
|
valid/with/paths
|
|
|
|
|
|
|
|
../foo
|
|
|
|
/../foo
|
|
|
|
..\foo
|
|
|
|
\..\foo
|
|
|
|
foo/..
|
|
|
|
foo/../
|
|
|
|
foo\..
|
|
|
|
foo\..\
|
|
|
|
foo/../bar
|
|
|
|
EOF
|
|
|
|
|
|
|
|
test_cmp expect actual
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success 'create innocent subrepo' '
|
|
|
|
git init innocent &&
|
|
|
|
git -C innocent commit --allow-empty -m foo
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success 'submodule add refuses invalid names' '
|
|
|
|
test_must_fail \
|
|
|
|
git submodule add --name ../../modules/evil "$PWD/innocent" evil
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success 'add evil submodule' '
|
|
|
|
git submodule add "$PWD/innocent" evil &&
|
|
|
|
|
|
|
|
mkdir modules &&
|
|
|
|
cp -r .git/modules/evil modules &&
|
|
|
|
write_script modules/evil/hooks/post-checkout <<-\EOF &&
|
|
|
|
echo >&2 "RUNNING POST CHECKOUT"
|
|
|
|
EOF
|
|
|
|
|
|
|
|
git config -f .gitmodules submodule.evil.update checkout &&
|
|
|
|
git config -f .gitmodules --rename-section \
|
|
|
|
submodule.evil submodule.../../modules/evil &&
|
|
|
|
git add modules &&
|
|
|
|
git commit -am evil
|
|
|
|
'
|
|
|
|
|
|
|
|
# This step seems like it shouldn't be necessary, since the payload is
|
|
|
|
# contained entirely in the evil submodule. But due to the vagaries of the
|
|
|
|
# submodule code, checking out the evil module will fail unless ".git/modules"
|
|
|
|
# exists. Adding another submodule (with a name that sorts before "evil") is an
|
|
|
|
# easy way to make sure this is the case in the victim clone.
|
|
|
|
test_expect_success 'add other submodule' '
|
|
|
|
git submodule add "$PWD/innocent" another-module &&
|
|
|
|
git add another-module &&
|
|
|
|
git commit -am another
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success 'clone evil superproject' '
|
|
|
|
git clone --recurse-submodules . victim >output 2>&1 &&
|
|
|
|
! grep "RUNNING POST CHECKOUT" output
|
|
|
|
'
|
|
|
|
|
2018-05-02 23:20:35 +02:00
|
|
|
test_expect_success 'fsck detects evil superproject' '
|
|
|
|
test_must_fail git fsck
|
|
|
|
'
|
|
|
|
|
2018-05-05 01:40:08 +02:00
|
|
|
test_expect_success 'transfer.fsckObjects detects evil superproject (unpack)' '
|
|
|
|
rm -rf dst.git &&
|
|
|
|
git init --bare dst.git &&
|
|
|
|
git -C dst.git config transfer.fsckObjects true &&
|
|
|
|
test_must_fail git push dst.git HEAD
|
|
|
|
'
|
|
|
|
|
index-pack: check .gitmodules files with --strict
Now that the internal fsck code has all of the plumbing we
need, we can start checking incoming .gitmodules files.
Naively, it seems like we would just need to add a call to
fsck_finish() after we've processed all of the objects. And
that would be enough to cover the initial test included
here. But there are two extra bits:
1. We currently don't bother calling fsck_object() at all
for blobs, since it has traditionally been a noop. We'd
actually catch these blobs in fsck_finish() at the end,
but it's more efficient to check them when we already
have the object loaded in memory.
2. The second pass done by fsck_finish() needs to access
the objects, but we're actually indexing the pack in
this process. In theory we could give the fsck code a
special callback for accessing the in-pack data, but
it's actually quite tricky:
a. We don't have an internal efficient index mapping
oids to packfile offsets. We only generate it on
the fly as part of writing out the .idx file.
b. We'd still have to reconstruct deltas, which means
we'd basically have to replicate all of the
reading logic in packfile.c.
Instead, let's avoid running fsck_finish() until after
we've written out the .idx file, and then just add it
to our internal packed_git list.
This does mean that the objects are "in the repository"
before we finish our fsck checks. But unpack-objects
already exhibits this same behavior, and it's an
acceptable tradeoff here for the same reason: the
quarantine mechanism means that pushes will be
fully protected.
In addition to a basic push test in t7415, we add a sneaky
pack that reverses the usual object order in the pack,
requiring that index-pack access the tree and blob during
the "finish" step.
This already works for unpack-objects (since it will have
written out loose objects), but we'll check it with this
sneaky pack for good measure.
Signed-off-by: Jeff King <peff@peff.net>
2018-05-05 01:45:01 +02:00
|
|
|
test_expect_success 'transfer.fsckObjects detects evil superproject (index)' '
|
|
|
|
rm -rf dst.git &&
|
|
|
|
git init --bare dst.git &&
|
|
|
|
git -C dst.git config transfer.fsckObjects true &&
|
|
|
|
git -C dst.git config transfer.unpackLimit 1 &&
|
|
|
|
test_must_fail git push dst.git HEAD
|
|
|
|
'
|
|
|
|
|
|
|
|
# Normally our packs contain commits followed by trees followed by blobs. This
|
|
|
|
# reverses the order, which requires backtracking to find the context of a
|
|
|
|
# blob. We'll start with a fresh gitmodules-only tree to make it simpler.
|
|
|
|
test_expect_success 'create oddly ordered pack' '
|
|
|
|
git checkout --orphan odd &&
|
|
|
|
git rm -rf --cached . &&
|
|
|
|
git add .gitmodules &&
|
|
|
|
git commit -m odd &&
|
|
|
|
{
|
|
|
|
pack_header 3 &&
|
|
|
|
pack_obj $(git rev-parse HEAD:.gitmodules) &&
|
|
|
|
pack_obj $(git rev-parse HEAD^{tree}) &&
|
|
|
|
pack_obj $(git rev-parse HEAD)
|
|
|
|
} >odd.pack &&
|
|
|
|
pack_trailer odd.pack
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success 'transfer.fsckObjects handles odd pack (unpack)' '
|
|
|
|
rm -rf dst.git &&
|
|
|
|
git init --bare dst.git &&
|
|
|
|
test_must_fail git -C dst.git unpack-objects --strict <odd.pack
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success 'transfer.fsckObjects handles odd pack (index)' '
|
|
|
|
rm -rf dst.git &&
|
|
|
|
git init --bare dst.git &&
|
|
|
|
test_must_fail git -C dst.git index-pack --strict --stdin <odd.pack
|
|
|
|
'
|
|
|
|
|
index-pack: handle --strict checks of non-repo packs
Commit 73c3f0f704 (index-pack: check .gitmodules files with
--strict, 2018-05-04) added a call to add_packed_git(), with
the intent that the newly-indexed objects would be available
to the process when we run fsck_finish(). But that's not
what add_packed_git() does. It only allocates the struct,
and you must install_packed_git() on the result. So that
call was effectively doing nothing (except leaking a
struct).
But wait, we passed all of the tests! Does that mean we
don't need the call at all?
For normal cases, no. When we run "index-pack --stdin"
inside a repository, we write the new pack into the object
directory. If fsck_finish() needs to access one of the new
objects, then our initial lookup will fail to find it, but
we'll follow up by running reprepare_packed_git() and
looking again. That logic was meant to handle somebody else
repacking simultaneously, but it ends up working for us
here.
But there is a case that does need this, that we were not
testing. You can run "git index-pack foo.pack" on any file,
even when it is not inside the object directory. Or you may
not even be in a repository at all! This case fails without
doing the proper install_packed_git() call.
We can make this work by adding the install call.
Note that we should be prepared to handle add_packed_git()
failing. We can just silently ignore this case, though. If
fsck_finish() later needs the objects and they're not
available, it will complain itself. And if it doesn't
(because we were able to resolve the whole fsck in the first
pass), then it actually isn't an interesting error at all.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-06-01 00:45:31 +02:00
|
|
|
test_expect_success 'index-pack --strict works for non-repo pack' '
|
|
|
|
rm -rf dst.git &&
|
|
|
|
git init --bare dst.git &&
|
|
|
|
cp odd.pack dst.git &&
|
|
|
|
test_must_fail git -C dst.git index-pack --strict odd.pack 2>output &&
|
|
|
|
# Make sure we fail due to bad gitmodules content, not because we
|
|
|
|
# could not read the blob in the first place.
|
|
|
|
grep gitmodulesName output
|
|
|
|
'
|
|
|
|
|
2021-05-03 22:43:18 +02:00
|
|
|
check_dotx_symlink () {
|
fsck: warn about symlinked dotfiles we'll open with O_NOFOLLOW
In the commits merged in via 204333b015 (Merge branch
'jk/open-dotgitx-with-nofollow', 2021-03-22), we stopped following
symbolic links for .gitattributes, .gitignore, and .mailmap files.
Let's teach fsck to warn that these symlinks are not going to do
anything. Note that this is just a warning, and won't block the objects
via transfer.fsckObjects, since there are reported to be cases of this
in the wild (and even once fixed, they will continue to exist in the
commit history of those projects, but are not particularly dangerous).
Note that we won't add these to the existing gitmodules block in the
fsck code. The logic for gitmodules is a bit more complicated, as we
also check the content of non-symlink instances we find. But for these
new files, there is no content check; we're just looking at the name and
mode of the tree entry (and we can avoid even the complicated name
checks in the common case that the mode doesn't indicate a symlink).
We can reuse the test helper function we defined for .gitmodules, though
(it needs some slight adjustments for the fsck error code, and because
we don't block these symlinks via verify_path()).
Note that I didn't explicitly test the transfer.fsckObjects case here
(nor does the existing .gitmodules test that it blocks a push). The
translation of fsck severities to outcomes is covered in general in
t5504.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-05-03 22:43:25 +02:00
|
|
|
fsck_must_fail=test_must_fail
|
|
|
|
fsck_prefix=error
|
|
|
|
refuse_index=t
|
|
|
|
case "$1" in
|
|
|
|
--warning)
|
|
|
|
fsck_must_fail=
|
|
|
|
fsck_prefix=warning
|
|
|
|
refuse_index=
|
|
|
|
shift
|
|
|
|
;;
|
|
|
|
esac
|
|
|
|
|
2021-05-03 22:43:18 +02:00
|
|
|
name=$1
|
|
|
|
type=$2
|
|
|
|
path=$3
|
|
|
|
dir=symlink-$name-$type
|
|
|
|
|
|
|
|
test_expect_success "set up repo with symlinked $name ($type)" '
|
|
|
|
git init $dir &&
|
|
|
|
(
|
|
|
|
cd $dir &&
|
|
|
|
|
|
|
|
# Make the tree directly to avoid index restrictions.
|
|
|
|
#
|
|
|
|
# Because symlinks store the target as a blob, choose
|
|
|
|
# a pathname that could be parsed as a .gitmodules file
|
|
|
|
# to trick naive non-symlink-aware checking.
|
|
|
|
tricky="[foo]bar=true" &&
|
|
|
|
content=$(git hash-object -w ../.gitmodules) &&
|
|
|
|
target=$(printf "$tricky" | git hash-object -w --stdin) &&
|
|
|
|
{
|
|
|
|
printf "100644 blob $content\t$tricky\n" &&
|
|
|
|
printf "120000 blob $target\t$path\n"
|
|
|
|
} >bad-tree
|
|
|
|
) &&
|
|
|
|
tree=$(git -C $dir mktree <$dir/bad-tree)
|
|
|
|
'
|
|
|
|
|
|
|
|
test_expect_success "fsck detects symlinked $name ($type)" '
|
|
|
|
(
|
|
|
|
cd $dir &&
|
|
|
|
|
|
|
|
# Check not only that we fail, but that it is due to the
|
|
|
|
# symlink detector
|
fsck: warn about symlinked dotfiles we'll open with O_NOFOLLOW
In the commits merged in via 204333b015 (Merge branch
'jk/open-dotgitx-with-nofollow', 2021-03-22), we stopped following
symbolic links for .gitattributes, .gitignore, and .mailmap files.
Let's teach fsck to warn that these symlinks are not going to do
anything. Note that this is just a warning, and won't block the objects
via transfer.fsckObjects, since there are reported to be cases of this
in the wild (and even once fixed, they will continue to exist in the
commit history of those projects, but are not particularly dangerous).
Note that we won't add these to the existing gitmodules block in the
fsck code. The logic for gitmodules is a bit more complicated, as we
also check the content of non-symlink instances we find. But for these
new files, there is no content check; we're just looking at the name and
mode of the tree entry (and we can avoid even the complicated name
checks in the common case that the mode doesn't indicate a symlink).
We can reuse the test helper function we defined for .gitmodules, though
(it needs some slight adjustments for the fsck error code, and because
we don't block these symlinks via verify_path()).
Note that I didn't explicitly test the transfer.fsckObjects case here
(nor does the existing .gitmodules test that it blocks a push). The
translation of fsck severities to outcomes is covered in general in
t5504.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-05-03 22:43:25 +02:00
|
|
|
$fsck_must_fail git fsck 2>output &&
|
|
|
|
grep "$fsck_prefix.*tree $tree: ${name}Symlink" output
|
2021-05-03 22:43:18 +02:00
|
|
|
)
|
|
|
|
'
|
|
|
|
|
fsck: warn about symlinked dotfiles we'll open with O_NOFOLLOW
In the commits merged in via 204333b015 (Merge branch
'jk/open-dotgitx-with-nofollow', 2021-03-22), we stopped following
symbolic links for .gitattributes, .gitignore, and .mailmap files.
Let's teach fsck to warn that these symlinks are not going to do
anything. Note that this is just a warning, and won't block the objects
via transfer.fsckObjects, since there are reported to be cases of this
in the wild (and even once fixed, they will continue to exist in the
commit history of those projects, but are not particularly dangerous).
Note that we won't add these to the existing gitmodules block in the
fsck code. The logic for gitmodules is a bit more complicated, as we
also check the content of non-symlink instances we find. But for these
new files, there is no content check; we're just looking at the name and
mode of the tree entry (and we can avoid even the complicated name
checks in the common case that the mode doesn't indicate a symlink).
We can reuse the test helper function we defined for .gitmodules, though
(it needs some slight adjustments for the fsck error code, and because
we don't block these symlinks via verify_path()).
Note that I didn't explicitly test the transfer.fsckObjects case here
(nor does the existing .gitmodules test that it blocks a push). The
translation of fsck severities to outcomes is covered in general in
t5504.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-05-03 22:43:25 +02:00
|
|
|
test -n "$refuse_index" &&
|
2021-05-03 22:43:18 +02:00
|
|
|
test_expect_success "refuse to load symlinked $name into index ($type)" '
|
|
|
|
test_must_fail \
|
|
|
|
git -C $dir \
|
|
|
|
-c core.protectntfs \
|
|
|
|
-c core.protecthfs \
|
|
|
|
read-tree $tree 2>err &&
|
|
|
|
grep "invalid path.*$name" err &&
|
|
|
|
git -C $dir ls-files -s >out &&
|
|
|
|
test_must_be_empty out
|
|
|
|
'
|
|
|
|
}
|
|
|
|
|
|
|
|
check_dotx_symlink gitmodules vanilla .gitmodules
|
|
|
|
check_dotx_symlink gitmodules ntfs ".gitmodules ."
|
|
|
|
check_dotx_symlink gitmodules hfs ".${u200c}gitmodules"
|
2021-05-03 22:43:15 +02:00
|
|
|
|
fsck: warn about symlinked dotfiles we'll open with O_NOFOLLOW
In the commits merged in via 204333b015 (Merge branch
'jk/open-dotgitx-with-nofollow', 2021-03-22), we stopped following
symbolic links for .gitattributes, .gitignore, and .mailmap files.
Let's teach fsck to warn that these symlinks are not going to do
anything. Note that this is just a warning, and won't block the objects
via transfer.fsckObjects, since there are reported to be cases of this
in the wild (and even once fixed, they will continue to exist in the
commit history of those projects, but are not particularly dangerous).
Note that we won't add these to the existing gitmodules block in the
fsck code. The logic for gitmodules is a bit more complicated, as we
also check the content of non-symlink instances we find. But for these
new files, there is no content check; we're just looking at the name and
mode of the tree entry (and we can avoid even the complicated name
checks in the common case that the mode doesn't indicate a symlink).
We can reuse the test helper function we defined for .gitmodules, though
(it needs some slight adjustments for the fsck error code, and because
we don't block these symlinks via verify_path()).
Note that I didn't explicitly test the transfer.fsckObjects case here
(nor does the existing .gitmodules test that it blocks a push). The
translation of fsck severities to outcomes is covered in general in
t5504.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-05-03 22:43:25 +02:00
|
|
|
check_dotx_symlink --warning gitattributes vanilla .gitattributes
|
|
|
|
check_dotx_symlink --warning gitattributes ntfs ".gitattributes ."
|
|
|
|
check_dotx_symlink --warning gitattributes hfs ".${u200c}gitattributes"
|
|
|
|
|
|
|
|
check_dotx_symlink --warning gitignore vanilla .gitignore
|
|
|
|
check_dotx_symlink --warning gitignore ntfs ".gitignore ."
|
|
|
|
check_dotx_symlink --warning gitignore hfs ".${u200c}gitignore"
|
|
|
|
|
|
|
|
check_dotx_symlink --warning mailmap vanilla .mailmap
|
|
|
|
check_dotx_symlink --warning mailmap ntfs ".mailmap ."
|
|
|
|
check_dotx_symlink --warning mailmap hfs ".${u200c}mailmap"
|
2018-05-05 02:03:35 +02:00
|
|
|
|
2018-06-11 10:35:45 +02:00
|
|
|
test_expect_success 'fsck detects non-blob .gitmodules' '
|
|
|
|
git init non-blob &&
|
|
|
|
(
|
|
|
|
cd non-blob &&
|
|
|
|
|
|
|
|
# As above, make the funny tree directly to avoid index
|
|
|
|
# restrictions.
|
|
|
|
mkdir subdir &&
|
|
|
|
cp ../.gitmodules subdir/file &&
|
|
|
|
git add subdir/file &&
|
|
|
|
git commit -m ok &&
|
|
|
|
git ls-tree HEAD | sed s/subdir/.gitmodules/ | git mktree &&
|
|
|
|
|
|
|
|
test_must_fail git fsck 2>output &&
|
2018-11-10 06:16:15 +01:00
|
|
|
test_i18ngrep gitmodulesBlob output
|
2018-06-11 10:35:45 +02:00
|
|
|
)
|
|
|
|
'
|
|
|
|
|
2018-06-29 00:06:04 +02:00
|
|
|
test_expect_success 'fsck detects corrupt .gitmodules' '
|
|
|
|
git init corrupt &&
|
|
|
|
(
|
|
|
|
cd corrupt &&
|
|
|
|
|
|
|
|
echo "[broken" >.gitmodules &&
|
|
|
|
git add .gitmodules &&
|
|
|
|
git commit -m "broken gitmodules" &&
|
|
|
|
|
fsck: downgrade gitmodulesParse default to "info"
We added an fsck check in ed8b10f631 (fsck: check
.gitmodules content, 2018-05-02) as a defense against the
vulnerability from 0383bbb901 (submodule-config: verify
submodule names as paths, 2018-04-30). With the idea that
up-to-date hosting sites could protect downstream unpatched
clients that fetch from them.
As part of that defense, we reject any ".gitmodules" entry
that is not syntactically valid. The theory is that if we
cannot even parse the file, we cannot accurately check it
for vulnerabilities. And anybody with a broken .gitmodules
file would eventually want to know anyway.
But there are a few reasons this is a bad tradeoff in
practice:
- for this particular vulnerability, the client has to be
able to parse the file. So you cannot sneak an attack
through using a broken file, assuming the config parsers
for the process running fsck and the eventual victim are
functionally equivalent.
- a broken .gitmodules file is not necessarily a problem.
Our fsck check detects .gitmodules in _any_ tree, not
just at the root. And the presence of a .gitmodules file
does not necessarily mean it will be used; you'd have to
also have gitlinks in the tree. The cgit repository, for
example, has a file named .gitmodules from a
pre-submodule attempt at sharing code, but does not
actually have any gitlinks.
- when the fsck check is used to reject a push, it's often
hard to work around. The pusher may not have full control
over the destination repository (e.g., if it's on a
hosting server, they may need to contact the hosting
site's support). And the broken .gitmodules may be too
far back in history for rewriting to be feasible (again,
this is an issue for cgit).
So we're being unnecessarily restrictive without actually
improving the security in a meaningful way. It would be more
convenient to downgrade this check to "info", which means
we'd still comment on it, but not reject a push. Site admins
can already do this via config, but we should ship sensible
defaults.
There are a few counterpoints to consider in favor of
keeping the check as an error:
- the first point above assumes that the config parsers for
the victim and the fsck process are equivalent. This is
pretty true now, but as time goes on will become less so.
Hosting sites are likely to upgrade their version of Git,
whereas vulnerable clients will be stagnant (if they did
upgrade, they'd cease to be vulnerable!). So in theory we
may see drift over time between what two config parsers
will accept.
In practice, this is probably OK. The config format is
pretty established at this point and shouldn't change a
lot. And the farther we get from the announcement of the
vulnerability, the less interesting this extra layer of
protection becomes. I.e., it was _most_ valuable on day
0, when everybody's client was still vulnerable and
hosting sites could protect people. But as time goes on
and people upgrade, the population of vulnerable clients
becomes smaller and smaller.
- In theory this could protect us from other
vulnerabilities in the future. E.g., .gitmodules are the
only way for a malicious repository to feed data to the
config parser, so this check could similarly protect
clients from a future (to-be-found) bug there.
But that's trading a hypothetical case for real-world
pain today. If we do find such a bug, the hosting site
would need to be updated to fix it, too. At which point
we could figure out whether it's possible to detect
_just_ the malicious case without hurting existing
broken-but-not-evil cases.
- Until recently, we hadn't made any restrictions on
.gitmodules content. So now in tightening that we're
hitting cases where certain things used to work, but
don't anymore. There's some moderate pain now. But as
time goes on, we'll see more (and more varied) cases that
will make tightening harder in the future. So there's
some argument for putting rules in place _now_, before
users grow more cases that violate them.
Again, this is trading pain now for hypothetical benefit
in the future. And if we try hard in the future to keep
our tightening to a minimum (i.e., rejecting true
maliciousness without hurting broken-but-not-evil repos),
then that reduces even the hypothetical benefit.
Considering both sets of arguments, it makes sense to loosen
this check for now.
Note that we have to tweak the test in t7415 since fsck will
no longer consider this a fatal error. But we still check
that it reports the warning, and that we don't get the
spurious error from the config code.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-13 21:39:58 +02:00
|
|
|
git fsck 2>output &&
|
2018-11-10 06:16:15 +01:00
|
|
|
test_i18ngrep gitmodulesParse output &&
|
2018-06-29 00:06:04 +02:00
|
|
|
test_i18ngrep ! "bad config" output
|
|
|
|
)
|
|
|
|
'
|
|
|
|
|
cygwin: disallow backslashes in file names
The backslash character is not a valid part of a file name on Windows.
If, in Windows, Git attempts to write a file that has a backslash
character in the filename, it will be incorrectly interpreted as a
directory separator.
This caused CVE-2019-1354 in MinGW, as this behaviour can be manipulated
to cause the checkout to write to files it ought not write to, such as
adding code to the .git/hooks directory. This was fixed by e1d911dd4c
(mingw: disallow backslash characters in tree objects' file names,
2019-09-12). However, the vulnerability also exists in Cygwin: while
Cygwin mostly provides a POSIX-like path system, it will still interpret
a backslash as a directory separator.
To avoid this vulnerability, CVE-2021-29468, extend the previous fix to
also apply to Cygwin.
Similarly, extend the test case added by the previous version of the
commit. The test suite doesn't have an easy way to say "run this test
if in MinGW or Cygwin", so add a new test prerequisite that covers both.
As well as checking behaviour in the presence of paths containing
backslashes, the existing test also checks behaviour in the presence of
paths that differ only by the presence of a trailing ".". MinGW follows
normal Windows application behaviour and treats them as the same path,
but Cygwin more closely emulates *nix systems (at the expense of
compatibility with native Windows applications) and will create and
distinguish between such paths. Gate the relevant bit of that test
accordingly.
Reported-by: RyotaK <security@ryotak.me>
Helped-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Adam Dinwoodie <adam@dinwoodie.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-29 22:11:44 +02:00
|
|
|
test_expect_success WINDOWS 'prevent git~1 squatting on Windows' '
|
clone --recurse-submodules: prevent name squatting on Windows
In addition to preventing `.git` from being tracked by Git, on Windows
we also have to prevent `git~1` from being tracked, as the default NTFS
short name (also known as the "8.3 filename") for the file name `.git`
is `git~1`, otherwise it would be possible for malicious repositories to
write directly into the `.git/` directory, e.g. a `post-checkout` hook
that would then be executed _during_ a recursive clone.
When we implemented appropriate protections in 2b4c6efc821 (read-cache:
optionally disallow NTFS .git variants, 2014-12-16), we had analyzed
carefully that the `.git` directory or file would be guaranteed to be
the first directory entry to be written. Otherwise it would be possible
e.g. for a file named `..git` to be assigned the short name `git~1` and
subsequently, the short name generated for `.git` would be `git~2`. Or
`git~3`. Or even `~9999999` (for a detailed explanation of the lengths
we have to go to protect `.gitmodules`, see the commit message of
e7cb0b4455c (is_ntfs_dotgit: match other .git files, 2018-05-11)).
However, by exploiting two issues (that will be addressed in a related
patch series close by), it is currently possible to clone a submodule
into a non-empty directory:
- On Windows, file names cannot end in a space or a period (for
historical reasons: the period separating the base name from the file
extension was not actually written to disk, and the base name/file
extension was space-padded to the full 8/3 characters, respectively).
Helpfully, when creating a directory under the name, say, `sub.`, that
trailing period is trimmed automatically and the actual name on disk
is `sub`.
This means that while Git thinks that the submodule names `sub` and
`sub.` are different, they both access `.git/modules/sub/`.
- While the backslash character is a valid file name character on Linux,
it is not so on Windows. As Git tries to be cross-platform, it
therefore allows backslash characters in the file names stored in tree
objects.
Which means that it is totally possible that a submodule `c` sits next
to a file `c\..git`, and on Windows, during recursive clone a file
called `..git` will be written into `c/`, of course _before_ the
submodule is cloned.
Note that the actual exploit is not quite as simple as having a
submodule `c` next to a file `c\..git`, as we have to make sure that the
directory `.git/modules/b` already exists when the submodule is checked
out, otherwise a different code path is taken in `module_clone()` that
does _not_ allow a non-empty submodule directory to exist already.
Even if we will address both issues nearby (the next commit will
disallow backslash characters in tree entries' file names on Windows,
and another patch will disallow creating directories/files with trailing
spaces or periods), it is a wise idea to defend in depth against this
sort of attack vector: when submodules are cloned recursively, we now
_require_ the directory to be empty, addressing CVE-2019-1349.
Note: the code path we patch is shared with the code path of `git
submodule update --init`, which must not expect, in general, that the
directory is empty. Hence we have to introduce the new option
`--force-init` and hand it all the way down from `git submodule` to the
actual `git submodule--helper` process that performs the initial clone.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2019-09-12 14:20:39 +02:00
|
|
|
git init squatting &&
|
|
|
|
(
|
|
|
|
cd squatting &&
|
|
|
|
mkdir a &&
|
|
|
|
touch a/..git &&
|
|
|
|
git add a/..git &&
|
|
|
|
test_tick &&
|
|
|
|
git commit -m initial &&
|
|
|
|
|
|
|
|
modules="$(test_write_lines \
|
|
|
|
"[submodule \"b.\"]" "url = ." "path = c" \
|
|
|
|
"[submodule \"b\"]" "url = ." "path = d\\\\a" |
|
|
|
|
git hash-object -w --stdin)" &&
|
|
|
|
rev="$(git rev-parse --verify HEAD)" &&
|
|
|
|
hash="$(echo x | git hash-object -w --stdin)" &&
|
mingw: only test index entries for backslashes, not tree entries
During a clone of a repository that contained a file with a backslash in
its name in the past, as of v2.24.1(2), Git for Windows prints errors
like this:
error: filename in tree entry contains backslash: '\'
The idea is to prevent Git from even trying to write files with
backslashes in their file names: while these characters are valid in
file names on other platforms, on Windows it is interpreted as directory
separator (which would obviously lead to ambiguities, e.g. when there is
a file `a\b` and there is also a file `a/b`).
Arguably, this is the wrong layer for that error: As long as the user
never checks out the files whose names contain backslashes, there should
not be any problem in the first place.
So let's loosen the requirements: we now leave tree entries with
backslashes in their file names alone, but we do require any entries
that are added to the Git index to contain no backslashes on Windows.
Note: just as before, the check is guarded by `core.protectNTFS` (to
allow overriding the check by toggling that config setting), and it
is _only_ performed on Windows, as the backslash is not a directory
separator elsewhere, even when writing to NTFS-formatted volumes.
An alternative approach would be to try to prevent creating files with
backslashes in their file names. However, that comes with its own set of
problems. For example, `git config -f C:\ProgramData\Git\config ...` is
a very valid way to specify a custom config location, and we obviously
do _not_ want to prevent that. Therefore, the approach chosen in this
patch would appear to be better.
This addresses https://github.com/git-for-windows/git/issues/2435
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-31 23:53:50 +01:00
|
|
|
test_must_fail git update-index --add \
|
|
|
|
--cacheinfo 160000,$rev,d\\a 2>err &&
|
mingw: safeguard better against backslashes in file names
In 224c7d70fa1 (mingw: only test index entries for backslashes, not tree
entries, 2019-12-31), we relaxed the check for backslashes in tree
entries to check only index entries.
However, the code change was incorrect: it was added to
`add_index_entry_with_check()`, not to `add_index_entry()`, so under
certain circumstances it was possible to side-step the protection.
Besides, the description of that commit purported that all index entries
would be checked when in fact they were only checked when being added to
the index (there are code paths that do not do that, constructing
"transient" index entries).
In any case, it was pointed out in one insightful review at
https://github.com/git-for-windows/git/pull/2437#issuecomment-566771835
that it would be a much better idea to teach `verify_path()` to perform
the check for a backslash. This is safer, even if it comes with two
notable drawbacks:
- `verify_path()` cannot say _what_ is wrong with the path, therefore
the user will no longer be told that there was a backslash in the
path, only that the path was invalid.
- The `git apply` command also calls the `verify_path()` function, and
might have been able to handle Windows-style paths (i.e. with
backslashes instead of forward slashes). This will no longer be
possible unless the user (temporarily) sets `core.protectNTFS=false`.
Note that `git add <windows-path>` will _still_ work because
`normalize_path_copy_len()` will convert the backslashes to forward
slashes before hitting the code path that creates an index entry.
The clear advantage is that `verify_path()`'s purpose is to check the
validity of the file name, therefore we naturally tap into all the code
paths that need safeguarding, also implicitly into future code paths.
The benefits of that approach outweigh the downsides, so let's move the
check from `add_index_entry_with_check()` to `verify_path()`.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-01-09 14:30:34 +01:00
|
|
|
test_i18ngrep "Invalid path" err &&
|
2019-09-12 14:54:05 +02:00
|
|
|
git -c core.protectNTFS=false update-index --add \
|
clone --recurse-submodules: prevent name squatting on Windows
In addition to preventing `.git` from being tracked by Git, on Windows
we also have to prevent `git~1` from being tracked, as the default NTFS
short name (also known as the "8.3 filename") for the file name `.git`
is `git~1`, otherwise it would be possible for malicious repositories to
write directly into the `.git/` directory, e.g. a `post-checkout` hook
that would then be executed _during_ a recursive clone.
When we implemented appropriate protections in 2b4c6efc821 (read-cache:
optionally disallow NTFS .git variants, 2014-12-16), we had analyzed
carefully that the `.git` directory or file would be guaranteed to be
the first directory entry to be written. Otherwise it would be possible
e.g. for a file named `..git` to be assigned the short name `git~1` and
subsequently, the short name generated for `.git` would be `git~2`. Or
`git~3`. Or even `~9999999` (for a detailed explanation of the lengths
we have to go to protect `.gitmodules`, see the commit message of
e7cb0b4455c (is_ntfs_dotgit: match other .git files, 2018-05-11)).
However, by exploiting two issues (that will be addressed in a related
patch series close by), it is currently possible to clone a submodule
into a non-empty directory:
- On Windows, file names cannot end in a space or a period (for
historical reasons: the period separating the base name from the file
extension was not actually written to disk, and the base name/file
extension was space-padded to the full 8/3 characters, respectively).
Helpfully, when creating a directory under the name, say, `sub.`, that
trailing period is trimmed automatically and the actual name on disk
is `sub`.
This means that while Git thinks that the submodule names `sub` and
`sub.` are different, they both access `.git/modules/sub/`.
- While the backslash character is a valid file name character on Linux,
it is not so on Windows. As Git tries to be cross-platform, it
therefore allows backslash characters in the file names stored in tree
objects.
Which means that it is totally possible that a submodule `c` sits next
to a file `c\..git`, and on Windows, during recursive clone a file
called `..git` will be written into `c/`, of course _before_ the
submodule is cloned.
Note that the actual exploit is not quite as simple as having a
submodule `c` next to a file `c\..git`, as we have to make sure that the
directory `.git/modules/b` already exists when the submodule is checked
out, otherwise a different code path is taken in `module_clone()` that
does _not_ allow a non-empty submodule directory to exist already.
Even if we will address both issues nearby (the next commit will
disallow backslash characters in tree entries' file names on Windows,
and another patch will disallow creating directories/files with trailing
spaces or periods), it is a wise idea to defend in depth against this
sort of attack vector: when submodules are cloned recursively, we now
_require_ the directory to be empty, addressing CVE-2019-1349.
Note: the code path we patch is shared with the code path of `git
submodule update --init`, which must not expect, in general, that the
directory is empty. Hence we have to introduce the new option
`--force-init` and hand it all the way down from `git submodule` to the
actual `git submodule--helper` process that performs the initial clone.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2019-09-12 14:20:39 +02:00
|
|
|
--cacheinfo 100644,$modules,.gitmodules \
|
|
|
|
--cacheinfo 160000,$rev,c \
|
|
|
|
--cacheinfo 160000,$rev,d\\a \
|
|
|
|
--cacheinfo 100644,$hash,d./a/x \
|
|
|
|
--cacheinfo 100644,$hash,d./a/..git &&
|
|
|
|
test_tick &&
|
mingw: only test index entries for backslashes, not tree entries
During a clone of a repository that contained a file with a backslash in
its name in the past, as of v2.24.1(2), Git for Windows prints errors
like this:
error: filename in tree entry contains backslash: '\'
The idea is to prevent Git from even trying to write files with
backslashes in their file names: while these characters are valid in
file names on other platforms, on Windows it is interpreted as directory
separator (which would obviously lead to ambiguities, e.g. when there is
a file `a\b` and there is also a file `a/b`).
Arguably, this is the wrong layer for that error: As long as the user
never checks out the files whose names contain backslashes, there should
not be any problem in the first place.
So let's loosen the requirements: we now leave tree entries with
backslashes in their file names alone, but we do require any entries
that are added to the Git index to contain no backslashes on Windows.
Note: just as before, the check is guarded by `core.protectNTFS` (to
allow overriding the check by toggling that config setting), and it
is _only_ performed on Windows, as the backslash is not a directory
separator elsewhere, even when writing to NTFS-formatted volumes.
An alternative approach would be to try to prevent creating files with
backslashes in their file names. However, that comes with its own set of
problems. For example, `git config -f C:\ProgramData\Git\config ...` is
a very valid way to specify a custom config location, and we obviously
do _not_ want to prevent that. Therefore, the approach chosen in this
patch would appear to be better.
This addresses https://github.com/git-for-windows/git/issues/2435
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-12-31 23:53:50 +01:00
|
|
|
git -c core.protectNTFS=false commit -m "module"
|
clone --recurse-submodules: prevent name squatting on Windows
In addition to preventing `.git` from being tracked by Git, on Windows
we also have to prevent `git~1` from being tracked, as the default NTFS
short name (also known as the "8.3 filename") for the file name `.git`
is `git~1`, otherwise it would be possible for malicious repositories to
write directly into the `.git/` directory, e.g. a `post-checkout` hook
that would then be executed _during_ a recursive clone.
When we implemented appropriate protections in 2b4c6efc821 (read-cache:
optionally disallow NTFS .git variants, 2014-12-16), we had analyzed
carefully that the `.git` directory or file would be guaranteed to be
the first directory entry to be written. Otherwise it would be possible
e.g. for a file named `..git` to be assigned the short name `git~1` and
subsequently, the short name generated for `.git` would be `git~2`. Or
`git~3`. Or even `~9999999` (for a detailed explanation of the lengths
we have to go to protect `.gitmodules`, see the commit message of
e7cb0b4455c (is_ntfs_dotgit: match other .git files, 2018-05-11)).
However, by exploiting two issues (that will be addressed in a related
patch series close by), it is currently possible to clone a submodule
into a non-empty directory:
- On Windows, file names cannot end in a space or a period (for
historical reasons: the period separating the base name from the file
extension was not actually written to disk, and the base name/file
extension was space-padded to the full 8/3 characters, respectively).
Helpfully, when creating a directory under the name, say, `sub.`, that
trailing period is trimmed automatically and the actual name on disk
is `sub`.
This means that while Git thinks that the submodule names `sub` and
`sub.` are different, they both access `.git/modules/sub/`.
- While the backslash character is a valid file name character on Linux,
it is not so on Windows. As Git tries to be cross-platform, it
therefore allows backslash characters in the file names stored in tree
objects.
Which means that it is totally possible that a submodule `c` sits next
to a file `c\..git`, and on Windows, during recursive clone a file
called `..git` will be written into `c/`, of course _before_ the
submodule is cloned.
Note that the actual exploit is not quite as simple as having a
submodule `c` next to a file `c\..git`, as we have to make sure that the
directory `.git/modules/b` already exists when the submodule is checked
out, otherwise a different code path is taken in `module_clone()` that
does _not_ allow a non-empty submodule directory to exist already.
Even if we will address both issues nearby (the next commit will
disallow backslash characters in tree entries' file names on Windows,
and another patch will disallow creating directories/files with trailing
spaces or periods), it is a wise idea to defend in depth against this
sort of attack vector: when submodules are cloned recursively, we now
_require_ the directory to be empty, addressing CVE-2019-1349.
Note: the code path we patch is shared with the code path of `git
submodule update --init`, which must not expect, in general, that the
directory is empty. Hence we have to introduce the new option
`--force-init` and hand it all the way down from `git submodule` to the
actual `git submodule--helper` process that performs the initial clone.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2019-09-12 14:20:39 +02:00
|
|
|
) &&
|
cygwin: disallow backslashes in file names
The backslash character is not a valid part of a file name on Windows.
If, in Windows, Git attempts to write a file that has a backslash
character in the filename, it will be incorrectly interpreted as a
directory separator.
This caused CVE-2019-1354 in MinGW, as this behaviour can be manipulated
to cause the checkout to write to files it ought not write to, such as
adding code to the .git/hooks directory. This was fixed by e1d911dd4c
(mingw: disallow backslash characters in tree objects' file names,
2019-09-12). However, the vulnerability also exists in Cygwin: while
Cygwin mostly provides a POSIX-like path system, it will still interpret
a backslash as a directory separator.
To avoid this vulnerability, CVE-2021-29468, extend the previous fix to
also apply to Cygwin.
Similarly, extend the test case added by the previous version of the
commit. The test suite doesn't have an easy way to say "run this test
if in MinGW or Cygwin", so add a new test prerequisite that covers both.
As well as checking behaviour in the presence of paths containing
backslashes, the existing test also checks behaviour in the presence of
paths that differ only by the presence of a trailing ".". MinGW follows
normal Windows application behaviour and treats them as the same path,
but Cygwin more closely emulates *nix systems (at the expense of
compatibility with native Windows applications) and will create and
distinguish between such paths. Gate the relevant bit of that test
accordingly.
Reported-by: RyotaK <security@ryotak.me>
Helped-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Adam Dinwoodie <adam@dinwoodie.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-29 22:11:44 +02:00
|
|
|
if test_have_prereq MINGW
|
|
|
|
then
|
|
|
|
test_must_fail git -c core.protectNTFS=false \
|
|
|
|
clone --recurse-submodules squatting squatting-clone 2>err &&
|
|
|
|
test_i18ngrep -e "directory not empty" -e "not an empty directory" err &&
|
|
|
|
! grep gitdir squatting-clone/d/a/git~2
|
|
|
|
fi
|
clone --recurse-submodules: prevent name squatting on Windows
In addition to preventing `.git` from being tracked by Git, on Windows
we also have to prevent `git~1` from being tracked, as the default NTFS
short name (also known as the "8.3 filename") for the file name `.git`
is `git~1`, otherwise it would be possible for malicious repositories to
write directly into the `.git/` directory, e.g. a `post-checkout` hook
that would then be executed _during_ a recursive clone.
When we implemented appropriate protections in 2b4c6efc821 (read-cache:
optionally disallow NTFS .git variants, 2014-12-16), we had analyzed
carefully that the `.git` directory or file would be guaranteed to be
the first directory entry to be written. Otherwise it would be possible
e.g. for a file named `..git` to be assigned the short name `git~1` and
subsequently, the short name generated for `.git` would be `git~2`. Or
`git~3`. Or even `~9999999` (for a detailed explanation of the lengths
we have to go to protect `.gitmodules`, see the commit message of
e7cb0b4455c (is_ntfs_dotgit: match other .git files, 2018-05-11)).
However, by exploiting two issues (that will be addressed in a related
patch series close by), it is currently possible to clone a submodule
into a non-empty directory:
- On Windows, file names cannot end in a space or a period (for
historical reasons: the period separating the base name from the file
extension was not actually written to disk, and the base name/file
extension was space-padded to the full 8/3 characters, respectively).
Helpfully, when creating a directory under the name, say, `sub.`, that
trailing period is trimmed automatically and the actual name on disk
is `sub`.
This means that while Git thinks that the submodule names `sub` and
`sub.` are different, they both access `.git/modules/sub/`.
- While the backslash character is a valid file name character on Linux,
it is not so on Windows. As Git tries to be cross-platform, it
therefore allows backslash characters in the file names stored in tree
objects.
Which means that it is totally possible that a submodule `c` sits next
to a file `c\..git`, and on Windows, during recursive clone a file
called `..git` will be written into `c/`, of course _before_ the
submodule is cloned.
Note that the actual exploit is not quite as simple as having a
submodule `c` next to a file `c\..git`, as we have to make sure that the
directory `.git/modules/b` already exists when the submodule is checked
out, otherwise a different code path is taken in `module_clone()` that
does _not_ allow a non-empty submodule directory to exist already.
Even if we will address both issues nearby (the next commit will
disallow backslash characters in tree entries' file names on Windows,
and another patch will disallow creating directories/files with trailing
spaces or periods), it is a wise idea to defend in depth against this
sort of attack vector: when submodules are cloned recursively, we now
_require_ the directory to be empty, addressing CVE-2019-1349.
Note: the code path we patch is shared with the code path of `git
submodule update --init`, which must not expect, in general, that the
directory is empty. Hence we have to introduce the new option
`--force-init` and hand it all the way down from `git submodule` to the
actual `git submodule--helper` process that performs the initial clone.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
2019-09-12 14:20:39 +02:00
|
|
|
'
|
|
|
|
|
2019-10-01 23:27:18 +02:00
|
|
|
test_expect_success 'git dirs of sibling submodules must not be nested' '
|
|
|
|
git init nested &&
|
|
|
|
test_commit -C nested nested &&
|
|
|
|
(
|
|
|
|
cd nested &&
|
|
|
|
cat >.gitmodules <<-EOF &&
|
|
|
|
[submodule "hippo"]
|
|
|
|
url = .
|
|
|
|
path = thing1
|
|
|
|
[submodule "hippo/hooks"]
|
|
|
|
url = .
|
|
|
|
path = thing2
|
|
|
|
EOF
|
|
|
|
git clone . thing1 &&
|
|
|
|
git clone . thing2 &&
|
|
|
|
git add .gitmodules thing1 thing2 &&
|
|
|
|
test_tick &&
|
|
|
|
git commit -m nested
|
|
|
|
) &&
|
|
|
|
test_must_fail git clone --recurse-submodules nested clone 2>err &&
|
2019-12-04 22:47:25 +01:00
|
|
|
test_i18ngrep "is inside git dir" err
|
2019-10-01 23:27:18 +02:00
|
|
|
'
|
|
|
|
|
submodule-config: verify submodule names as paths
Submodule "names" come from the untrusted .gitmodules file,
but we blindly append them to $GIT_DIR/modules to create our
on-disk repo paths. This means you can do bad things by
putting "../" into the name (among other things).
Let's sanity-check these names to avoid building a path that
can be exploited. There are two main decisions:
1. What should the allowed syntax be?
It's tempting to reuse verify_path(), since submodule
names typically come from in-repo paths. But there are
two reasons not to:
a. It's technically more strict than what we need, as
we really care only about breaking out of the
$GIT_DIR/modules/ hierarchy. E.g., having a
submodule named "foo/.git" isn't actually
dangerous, and it's possible that somebody has
manually given such a funny name.
b. Since we'll eventually use this checking logic in
fsck to prevent downstream repositories, it should
be consistent across platforms. Because
verify_path() relies on is_dir_sep(), it wouldn't
block "foo\..\bar" on a non-Windows machine.
2. Where should we enforce it? These days most of the
.gitmodules reads go through submodule-config.c, so
I've put it there in the reading step. That should
cover all of the C code.
We also construct the name for "git submodule add"
inside the git-submodule.sh script. This is probably
not a big deal for security since the name is coming
from the user anyway, but it would be polite to remind
them if the name they pick is invalid (and we need to
expose the name-checker to the shell anyway for our
test scripts).
This patch issues a warning when reading .gitmodules
and just ignores the related config entry completely.
This will generally end up producing a sensible error,
as it works the same as a .gitmodules file which is
missing a submodule entry (so "submodule update" will
barf, but "git clone --recurse-submodules" will print
an error but not abort the clone.
There is one minor oddity, which is that we print the
warning once per malformed config key (since that's how
the config subsystem gives us the entries). So in the
new test, for example, the user would see three
warnings. That's OK, since the intent is that this case
should never come up outside of malicious repositories
(and then it might even benefit the user to see the
message multiple times).
Credit for finding this vulnerability and the proof of
concept from which the test script was adapted goes to
Etienne Stalmans.
Signed-off-by: Jeff King <peff@peff.net>
2018-04-30 09:25:25 +02:00
|
|
|
test_done
|