git-commit-vandalism/t/helper/test-simple-ipc.c

788 lines
19 KiB
C
Raw Normal View History

/*
* test-simple-ipc.c: verify that the Inter-Process Communication works.
*/
#include "test-tool.h"
#include "cache.h"
#include "strbuf.h"
#include "simple-ipc.h"
#include "parse-options.h"
#include "thread-utils.h"
#include "strvec.h"
#ifndef SUPPORTS_SIMPLE_IPC
int cmd__simple_ipc(int argc, const char **argv)
{
die("simple IPC not available on this platform");
}
#else
/*
* The test daemon defines an "application callback" that supports a
* series of commands (see `test_app_cb()`).
*
* Unknown commands are caught here and we send an error message back
* to the client process.
*/
static int app__unhandled_command(const char *command,
ipc_server_reply_cb *reply_cb,
struct ipc_server_reply_data *reply_data)
{
struct strbuf buf = STRBUF_INIT;
int ret;
strbuf_addf(&buf, "unhandled command: %s", command);
ret = reply_cb(reply_data, buf.buf, buf.len);
strbuf_release(&buf);
return ret;
}
/*
* Reply with a single very large buffer. This is to ensure that
* long response are properly handled -- whether the chunking occurs
* in the kernel or in the (probably pkt-line) layer.
*/
#define BIG_ROWS (10000)
static int app__big_command(ipc_server_reply_cb *reply_cb,
struct ipc_server_reply_data *reply_data)
{
struct strbuf buf = STRBUF_INIT;
int row;
int ret;
for (row = 0; row < BIG_ROWS; row++)
strbuf_addf(&buf, "big: %.75d\n", row);
ret = reply_cb(reply_data, buf.buf, buf.len);
strbuf_release(&buf);
return ret;
}
/*
* Reply with a series of lines. This is to ensure that we can incrementally
* compute the response and chunk it to the client.
*/
#define CHUNK_ROWS (10000)
static int app__chunk_command(ipc_server_reply_cb *reply_cb,
struct ipc_server_reply_data *reply_data)
{
struct strbuf buf = STRBUF_INIT;
int row;
int ret;
for (row = 0; row < CHUNK_ROWS; row++) {
strbuf_setlen(&buf, 0);
strbuf_addf(&buf, "big: %.75d\n", row);
ret = reply_cb(reply_data, buf.buf, buf.len);
}
strbuf_release(&buf);
return ret;
}
/*
* Slowly reply with a series of lines. This is to model an expensive to
* compute chunked response (which might happen if this callback is running
* in a thread and is fighting for a lock with other threads).
*/
#define SLOW_ROWS (1000)
#define SLOW_DELAY_MS (10)
static int app__slow_command(ipc_server_reply_cb *reply_cb,
struct ipc_server_reply_data *reply_data)
{
struct strbuf buf = STRBUF_INIT;
int row;
int ret;
for (row = 0; row < SLOW_ROWS; row++) {
strbuf_setlen(&buf, 0);
strbuf_addf(&buf, "big: %.75d\n", row);
ret = reply_cb(reply_data, buf.buf, buf.len);
sleep_millisec(SLOW_DELAY_MS);
}
strbuf_release(&buf);
return ret;
}
/*
* The client sent a command followed by a (possibly very) large buffer.
*/
static int app__sendbytes_command(const char *received,
ipc_server_reply_cb *reply_cb,
struct ipc_server_reply_data *reply_data)
{
struct strbuf buf_resp = STRBUF_INIT;
const char *p = "?";
int len_ballast = 0;
int k;
int errs = 0;
int ret;
if (skip_prefix(received, "sendbytes ", &p))
len_ballast = strlen(p);
/*
* Verify that the ballast is n copies of a single letter.
* And that the multi-threaded IO layer didn't cross the streams.
*/
for (k = 1; k < len_ballast; k++)
if (p[k] != p[0])
errs++;
if (errs)
strbuf_addf(&buf_resp, "errs:%d\n", errs);
else
strbuf_addf(&buf_resp, "rcvd:%c%08d\n", p[0], len_ballast);
ret = reply_cb(reply_data, buf_resp.buf, buf_resp.len);
strbuf_release(&buf_resp);
return ret;
}
/*
* An arbitrary fixed address to verify that the application instance
* data is handled properly.
*/
static int my_app_data = 42;
static ipc_server_application_cb test_app_cb;
/*
* This is the "application callback" that sits on top of the
* "ipc-server". It completely defines the set of commands supported
* by this application.
*/
static int test_app_cb(void *application_data,
const char *command,
ipc_server_reply_cb *reply_cb,
struct ipc_server_reply_data *reply_data)
{
/*
* Verify that we received the application-data that we passed
* when we started the ipc-server. (We have several layers of
* callbacks calling callbacks and it's easy to get things mixed
* up (especially when some are "void*").)
*/
if (application_data != (void*)&my_app_data)
BUG("application_cb: application_data pointer wrong");
if (!strcmp(command, "quit")) {
/*
* The client sent a "quit" command. This is an async
* request for the server to shutdown.
*
* We DO NOT send the client a response message
* (because we have nothing to say and the other
* server threads have not yet stopped).
*
* Tell the ipc-server layer to start shutting down.
* This includes: stop listening for new connections
* on the socket/pipe and telling all worker threads
* to finish/drain their outgoing responses to other
* clients.
*
* This DOES NOT force an immediate sync shutdown.
*/
return SIMPLE_IPC_QUIT;
}
if (!strcmp(command, "ping")) {
const char *answer = "pong";
return reply_cb(reply_data, answer, strlen(answer));
}
if (!strcmp(command, "big"))
return app__big_command(reply_cb, reply_data);
if (!strcmp(command, "chunk"))
return app__chunk_command(reply_cb, reply_data);
if (!strcmp(command, "slow"))
return app__slow_command(reply_cb, reply_data);
if (starts_with(command, "sendbytes "))
return app__sendbytes_command(command, reply_cb, reply_data);
return app__unhandled_command(command, reply_cb, reply_data);
}
struct cl_args
{
const char *subcommand;
const char *path;
const char *token;
int nr_threads;
int max_wait_sec;
int bytecount;
int batchsize;
char bytevalue;
};
static struct cl_args cl_args = {
.subcommand = NULL,
.path = "ipc-test",
.token = NULL,
.nr_threads = 5,
.max_wait_sec = 60,
.bytecount = 1024,
.batchsize = 10,
.bytevalue = 'x',
};
/*
* This process will run as a simple-ipc server and listen for IPC commands
* from client processes.
*/
static int daemon__run_server(void)
{
int ret;
struct ipc_server_opts opts = {
.nr_threads = cl_args.nr_threads,
};
/*
* Synchronously run the ipc-server. We don't need any application
* instance data, so pass an arbitrary pointer (that we'll later
* verify made the round trip).
*/
ret = ipc_server_run(cl_args.path, &opts, test_app_cb, (void*)&my_app_data);
if (ret == -2)
error(_("socket/pipe already in use: '%s'"), cl_args.path);
else if (ret == -1)
error_errno(_("could not start server on: '%s'"), cl_args.path);
return ret;
}
#ifndef GIT_WINDOWS_NATIVE
/*
* This is adapted from `daemonize()`. Use `fork()` to directly create and
* run the daemon in a child process.
*/
static int spawn_server(pid_t *pid)
{
struct ipc_server_opts opts = {
.nr_threads = cl_args.nr_threads,
};
*pid = fork();
switch (*pid) {
case 0:
if (setsid() == -1)
error_errno(_("setsid failed"));
close(0);
close(1);
close(2);
sanitize_stdfds();
return ipc_server_run(cl_args.path, &opts, test_app_cb,
(void*)&my_app_data);
case -1:
return error_errno(_("could not spawn daemon in the background"));
default:
return 0;
}
}
#else
/*
* Conceptually like `daemonize()` but different because Windows does not
* have `fork(2)`. Spawn a normal Windows child process but without the
* limitations of `start_command()` and `finish_command()`.
*/
static int spawn_server(pid_t *pid)
{
char test_tool_exe[MAX_PATH];
struct strvec args = STRVEC_INIT;
int in, out;
GetModuleFileNameA(NULL, test_tool_exe, MAX_PATH);
in = open("/dev/null", O_RDONLY);
out = open("/dev/null", O_WRONLY);
strvec_push(&args, test_tool_exe);
strvec_push(&args, "simple-ipc");
strvec_push(&args, "run-daemon");
strvec_pushf(&args, "--name=%s", cl_args.path);
strvec_pushf(&args, "--threads=%d", cl_args.nr_threads);
*pid = mingw_spawnvpe(args.v[0], args.v, NULL, NULL, in, out, out);
close(in);
close(out);
strvec_clear(&args);
if (*pid < 0)
return error(_("could not spawn daemon in the background"));
return 0;
}
#endif
/*
* This is adapted from `wait_or_whine()`. Watch the child process and
* let it get started and begin listening for requests on the socket
* before reporting our success.
*/
static int wait_for_server_startup(pid_t pid_child)
{
int status;
pid_t pid_seen;
enum ipc_active_state s;
time_t time_limit, now;
time(&time_limit);
time_limit += cl_args.max_wait_sec;
for (;;) {
pid_seen = waitpid(pid_child, &status, WNOHANG);
if (pid_seen == -1)
return error_errno(_("waitpid failed"));
else if (pid_seen == 0) {
/*
* The child is still running (this should be
* the normal case). Try to connect to it on
* the socket and see if it is ready for
* business.
*
* If there is another daemon already running,
* our child will fail to start (possibly
* after a timeout on the lock), but we don't
* care (who responds) if the socket is live.
*/
s = ipc_get_active_state(cl_args.path);
if (s == IPC_STATE__LISTENING)
return 0;
time(&now);
if (now > time_limit)
return error(_("daemon not online yet"));
continue;
}
else if (pid_seen == pid_child) {
/*
* The new child daemon process shutdown while
* it was starting up, so it is not listening
* on the socket.
*
* Try to ping the socket in the odd chance
* that another daemon started (or was already
* running) while our child was starting.
*
* Again, we don't care who services the socket.
*/
s = ipc_get_active_state(cl_args.path);
if (s == IPC_STATE__LISTENING)
return 0;
/*
* We don't care about the WEXITSTATUS() nor
* any of the WIF*(status) values because
* `cmd__simple_ipc()` does the `!!result`
* trick on all function return values.
*
* So it is sufficient to just report the
* early shutdown as an error.
*/
return error(_("daemon failed to start"));
}
else
return error(_("waitpid is confused"));
}
}
/*
* This process will start a simple-ipc server in a background process and
* wait for it to become ready. This is like `daemonize()` but gives us
* more control and better error reporting (and makes it easier to write
* unit tests).
*/
static int daemon__start_server(void)
{
pid_t pid_child;
int ret;
/*
* Run the actual daemon in a background process.
*/
ret = spawn_server(&pid_child);
if (pid_child <= 0)
return ret;
/*
* Let the parent wait for the child process to get started
* and begin listening for requests on the socket.
*/
ret = wait_for_server_startup(pid_child);
return ret;
}
/*
* This process will run a quick probe to see if a simple-ipc server
* is active on this path.
*
* Returns 0 if the server is alive.
*/
static int client__probe_server(void)
{
enum ipc_active_state s;
s = ipc_get_active_state(cl_args.path);
switch (s) {
case IPC_STATE__LISTENING:
return 0;
case IPC_STATE__NOT_LISTENING:
return error("no server listening at '%s'", cl_args.path);
case IPC_STATE__PATH_NOT_FOUND:
return error("path not found '%s'", cl_args.path);
case IPC_STATE__INVALID_PATH:
return error("invalid pipe/socket name '%s'", cl_args.path);
case IPC_STATE__OTHER_ERROR:
default:
return error("other error for '%s'", cl_args.path);
}
}
/*
* Send an IPC command token to an already-running server daemon and
* print the response.
*
* This is a simple 1 word command/token that `test_app_cb()` (in the
* daemon process) will understand.
*/
static int client__send_ipc(void)
{
const char *command = "(no-command)";
struct strbuf buf = STRBUF_INIT;
struct ipc_client_connect_options options
= IPC_CLIENT_CONNECT_OPTIONS_INIT;
if (cl_args.token && *cl_args.token)
command = cl_args.token;
options.wait_if_busy = 1;
options.wait_if_not_found = 0;
if (!ipc_client_send_command(cl_args.path, &options, command, &buf)) {
if (buf.len) {
printf("%s\n", buf.buf);
fflush(stdout);
}
strbuf_release(&buf);
return 0;
}
return error("failed to send '%s' to '%s'", command, cl_args.path);
}
/*
* Send an IPC command to an already-running server and ask it to
* shutdown. "send quit" is an async request and queues a shutdown
* event in the server, so we spin and wait here for it to actually
* shutdown to make the unit tests a little easier to write.
*/
static int client__stop_server(void)
{
int ret;
time_t time_limit, now;
enum ipc_active_state s;
time(&time_limit);
time_limit += cl_args.max_wait_sec;
cl_args.token = "quit";
ret = client__send_ipc();
if (ret)
return ret;
for (;;) {
sleep_millisec(100);
s = ipc_get_active_state(cl_args.path);
if (s != IPC_STATE__LISTENING) {
/*
* The socket/pipe is gone and/or has stopped
* responding. Lets assume that the daemon
* process has exited too.
*/
return 0;
}
time(&now);
if (now > time_limit)
return error(_("daemon has not shutdown yet"));
}
}
/*
* Send an IPC command followed by ballast to confirm that a large
* message can be sent and that the kernel or pkt-line layers will
* properly chunk it and that the daemon receives the entire message.
*/
static int do_sendbytes(int bytecount, char byte, const char *path,
const struct ipc_client_connect_options *options)
{
struct strbuf buf_send = STRBUF_INIT;
struct strbuf buf_resp = STRBUF_INIT;
strbuf_addstr(&buf_send, "sendbytes ");
strbuf_addchars(&buf_send, byte, bytecount);
if (!ipc_client_send_command(path, options, buf_send.buf, &buf_resp)) {
strbuf_rtrim(&buf_resp);
printf("sent:%c%08d %s\n", byte, bytecount, buf_resp.buf);
fflush(stdout);
strbuf_release(&buf_send);
strbuf_release(&buf_resp);
return 0;
}
return error("client failed to sendbytes(%d, '%c') to '%s'",
bytecount, byte, path);
}
/*
* Send an IPC command with ballast to an already-running server daemon.
*/
static int client__sendbytes(void)
{
struct ipc_client_connect_options options
= IPC_CLIENT_CONNECT_OPTIONS_INIT;
options.wait_if_busy = 1;
options.wait_if_not_found = 0;
options.uds_disallow_chdir = 0;
return do_sendbytes(cl_args.bytecount, cl_args.bytevalue, cl_args.path,
&options);
}
struct multiple_thread_data {
pthread_t pthread_id;
struct multiple_thread_data *next;
const char *path;
int bytecount;
int batchsize;
int sum_errors;
int sum_good;
char letter;
};
static void *multiple_thread_proc(void *_multiple_thread_data)
{
struct multiple_thread_data *d = _multiple_thread_data;
int k;
struct ipc_client_connect_options options
= IPC_CLIENT_CONNECT_OPTIONS_INIT;
options.wait_if_busy = 1;
options.wait_if_not_found = 0;
/*
* A multi-threaded client should not be randomly calling chdir().
* The test will pass without this restriction because the test is
* not otherwise accessing the filesystem, but it makes us honest.
*/
options.uds_disallow_chdir = 1;
trace2_thread_start("multiple");
for (k = 0; k < d->batchsize; k++) {
if (do_sendbytes(d->bytecount + k, d->letter, d->path, &options))
d->sum_errors++;
else
d->sum_good++;
}
trace2_thread_exit();
return NULL;
}
/*
* Start a client-side thread pool. Each thread sends a series of
* IPC requests. Each request is on a new connection to the server.
*/
static int client__multiple(void)
{
struct multiple_thread_data *list = NULL;
int k;
int sum_join_errors = 0;
int sum_thread_errors = 0;
int sum_good = 0;
for (k = 0; k < cl_args.nr_threads; k++) {
struct multiple_thread_data *d = xcalloc(1, sizeof(*d));
d->next = list;
d->path = cl_args.path;
d->bytecount = cl_args.bytecount + cl_args.batchsize*(k/26);
d->batchsize = cl_args.batchsize;
d->sum_errors = 0;
d->sum_good = 0;
d->letter = 'A' + (k % 26);
if (pthread_create(&d->pthread_id, NULL, multiple_thread_proc, d)) {
warning("failed to create thread[%d] skipping remainder", k);
free(d);
break;
}
list = d;
}
while (list) {
struct multiple_thread_data *d = list;
if (pthread_join(d->pthread_id, NULL))
sum_join_errors++;
sum_thread_errors += d->sum_errors;
sum_good += d->sum_good;
list = d->next;
free(d);
}
printf("client (good %d) (join %d), (errors %d)\n",
sum_good, sum_join_errors, sum_thread_errors);
return (sum_join_errors + sum_thread_errors) ? 1 : 0;
}
int cmd__simple_ipc(int argc, const char **argv)
{
const char * const simple_ipc_usage[] = {
N_("test-helper simple-ipc is-active [<name>] [<options>]"),
N_("test-helper simple-ipc run-daemon [<name>] [<threads>]"),
N_("test-helper simple-ipc start-daemon [<name>] [<threads>] [<max-wait>]"),
N_("test-helper simple-ipc stop-daemon [<name>] [<max-wait>]"),
N_("test-helper simple-ipc send [<name>] [<token>]"),
N_("test-helper simple-ipc sendbytes [<name>] [<bytecount>] [<byte>]"),
N_("test-helper simple-ipc multiple [<name>] [<threads>] [<bytecount>] [<batchsize>]"),
NULL
};
const char *bytevalue = NULL;
struct option options[] = {
#ifndef GIT_WINDOWS_NATIVE
OPT_STRING(0, "name", &cl_args.path, N_("name"), N_("name or pathname of unix domain socket")),
#else
OPT_STRING(0, "name", &cl_args.path, N_("name"), N_("named-pipe name")),
#endif
OPT_INTEGER(0, "threads", &cl_args.nr_threads, N_("number of threads in server thread pool")),
OPT_INTEGER(0, "max-wait", &cl_args.max_wait_sec, N_("seconds to wait for daemon to start or stop")),
OPT_INTEGER(0, "bytecount", &cl_args.bytecount, N_("number of bytes")),
OPT_INTEGER(0, "batchsize", &cl_args.batchsize, N_("number of requests per thread")),
OPT_STRING(0, "byte", &bytevalue, N_("byte"), N_("ballast character")),
OPT_STRING(0, "token", &cl_args.token, N_("token"), N_("command token to send to the server")),
OPT_END()
};
if (argc < 2)
usage_with_options(simple_ipc_usage, options);
if (argc == 2 && !strcmp(argv[1], "-h"))
usage_with_options(simple_ipc_usage, options);
if (argc == 2 && !strcmp(argv[1], "SUPPORTS_SIMPLE_IPC"))
return 0;
cl_args.subcommand = argv[1];
argc--;
argv++;
argc = parse_options(argc, argv, NULL, options, simple_ipc_usage, 0);
if (cl_args.nr_threads < 1)
cl_args.nr_threads = 1;
if (cl_args.max_wait_sec < 0)
cl_args.max_wait_sec = 0;
if (cl_args.bytecount < 1)
cl_args.bytecount = 1;
if (cl_args.batchsize < 1)
cl_args.batchsize = 1;
if (bytevalue && *bytevalue)
cl_args.bytevalue = bytevalue[0];
/*
* Use '!!' on all dispatch functions to map from `error()` style
* (returns -1) style to `test_must_fail` style (expects 1). This
* makes shell error messages less confusing.
*/
if (!strcmp(cl_args.subcommand, "is-active"))
return !!client__probe_server();
if (!strcmp(cl_args.subcommand, "run-daemon"))
return !!daemon__run_server();
if (!strcmp(cl_args.subcommand, "start-daemon"))
return !!daemon__start_server();
/*
* Client commands follow. Ensure a server is running before
* sending any data. This might be overkill, but then again
* this is a test harness.
*/
if (!strcmp(cl_args.subcommand, "stop-daemon")) {
if (client__probe_server())
return 1;
return !!client__stop_server();
}
if (!strcmp(cl_args.subcommand, "send")) {
if (client__probe_server())
return 1;
return !!client__send_ipc();
}
if (!strcmp(cl_args.subcommand, "sendbytes")) {
if (client__probe_server())
return 1;
return !!client__sendbytes();
}
if (!strcmp(cl_args.subcommand, "multiple")) {
if (client__probe_server())
return 1;
return !!client__multiple();
}
die("Unhandled subcommand: '%s'", cl_args.subcommand);
}
#endif