2019-02-22 23:25:10 +01:00
|
|
|
#!/usr/bin/perl
|
|
|
|
#
|
|
|
|
# Parse event stream and convert individual events into a summary
|
|
|
|
# record for the process.
|
|
|
|
#
|
|
|
|
# Git.exe generates one or more "event" records for each API method,
|
|
|
|
# such as "start <argv>" and "exit <code>", during the life of the git
|
|
|
|
# process. Additionally, the input may contain interleaved events
|
|
|
|
# from multiple concurrent git processes and/or multiple threads from
|
|
|
|
# within a git process.
|
|
|
|
#
|
|
|
|
# Accumulate events for each process (based on its unique SID) in a
|
|
|
|
# dictionary and emit process summary records.
|
|
|
|
#
|
|
|
|
# Convert some of the variable fields (such as elapsed time) into
|
|
|
|
# placeholders (or omit them) to make HEREDOC comparisons easier in
|
|
|
|
# the test scripts.
|
|
|
|
#
|
|
|
|
# We may also omit fields not (currently) useful for testing purposes.
|
|
|
|
|
|
|
|
use strict;
|
|
|
|
use warnings;
|
|
|
|
use JSON::PP;
|
|
|
|
use Data::Dumper;
|
|
|
|
use Getopt::Long;
|
|
|
|
|
|
|
|
# The version of the trace2 event target format that we understand.
|
|
|
|
# This is reported in the 'version' event in the 'evt' field.
|
trace2: rename environment variables to GIT_TRACE2*
For an environment variable that is supposed to be set by users, the
GIT_TR2* env vars are just too unclear, inconsistent, and ugly.
Most of the established GIT_* environment variables don't use
abbreviations, and in case of the few that do (GIT_DIR,
GIT_COMMON_DIR, GIT_DIFF_OPTS) it's quite obvious what the
abbreviations (DIR and OPTS) stand for. But what does TR stand for?
Track, traditional, trailer, transaction, transfer, transformation,
transition, translation, transplant, transport, traversal, tree,
trigger, truncate, trust, or ...?!
The trace2 facility, as the '2' suffix in its name suggests, is
supposed to eventually supercede Git's original trace facility. It's
reasonable to expect that the corresponding environment variables
follow suit, and after the original GIT_TRACE variables they are
called GIT_TRACE2; there is no such thing is 'GIT_TR'.
All trace2-specific config variables are, very sensibly, in the
'trace2' section, not in 'tr2'.
OTOH, we don't gain anything at all by omitting the last three
characters of "trace" from the names of these environment variables.
So let's rename all GIT_TR2* environment variables to GIT_TRACE2*,
before they make their way into a stable release.
Signed-off-by: SZEDER Gábor <szeder.dev@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-05-19 16:43:08 +02:00
|
|
|
# It comes from the GIT_TRACE2_EVENT_VERSION macro in trace2/tr2_tgt_event.c
|
2019-02-22 23:25:10 +01:00
|
|
|
my $evt_version = '1';
|
|
|
|
|
|
|
|
my $show_children = 1;
|
|
|
|
my $show_exec = 1;
|
|
|
|
my $show_threads = 1;
|
|
|
|
|
|
|
|
# A hack to generate test HEREDOC data for pasting into the test script.
|
|
|
|
# Usage:
|
|
|
|
# cd "t/trash directory.t0212-trace2-event"
|
|
|
|
# $TT trace ... >trace.event
|
|
|
|
# VV=$(../../git.exe version | sed -e 's/^git version //')
|
|
|
|
# perl ../t0212/parse_events.perl --HEREDOC --VERSION=$VV <trace.event >heredoc
|
|
|
|
# Then paste heredoc into your new test.
|
|
|
|
|
|
|
|
my $gen_heredoc = 0;
|
|
|
|
my $gen_version = '';
|
|
|
|
|
|
|
|
GetOptions("children!" => \$show_children,
|
|
|
|
"exec!" => \$show_exec,
|
|
|
|
"threads!" => \$show_threads,
|
|
|
|
"HEREDOC!" => \$gen_heredoc,
|
|
|
|
"VERSION=s" => \$gen_version )
|
|
|
|
or die("Error in command line arguments\n");
|
|
|
|
|
|
|
|
|
|
|
|
# SIDs contains timestamps and PIDs of the process and its parents.
|
|
|
|
# This makes it difficult to match up in a HEREDOC in the test script.
|
|
|
|
# Build a map from actual SIDs to predictable constant values and yet
|
|
|
|
# keep the parent/child relationships. For example:
|
|
|
|
# {..., "sid":"1539706952458276-8652", ...}
|
|
|
|
# {..., "sid":"1539706952458276-8652/1539706952649493-15452", ...}
|
|
|
|
# becomes:
|
|
|
|
# {..., "sid":"_SID1_", ...}
|
|
|
|
# {..., "sid":"_SID1_/_SID2_", ...}
|
|
|
|
my $sid_map;
|
|
|
|
my $sid_count = 0;
|
|
|
|
|
|
|
|
my $processes;
|
|
|
|
|
|
|
|
while (<>) {
|
|
|
|
my $line = decode_json( $_ );
|
|
|
|
|
|
|
|
my $sid = "";
|
|
|
|
my $sid_sep = "";
|
|
|
|
|
|
|
|
my $raw_sid = $line->{'sid'};
|
|
|
|
my @raw_sid_parts = split /\//, $raw_sid;
|
|
|
|
foreach my $raw_sid_k (@raw_sid_parts) {
|
|
|
|
if (!exists $sid_map->{$raw_sid_k}) {
|
|
|
|
$sid_map->{$raw_sid_k} = '_SID' . $sid_count . '_';
|
|
|
|
$sid_count++;
|
|
|
|
}
|
|
|
|
$sid = $sid . $sid_sep . $sid_map->{$raw_sid_k};
|
|
|
|
$sid_sep = '/';
|
|
|
|
}
|
|
|
|
|
|
|
|
my $event = $line->{'event'};
|
|
|
|
|
|
|
|
if ($event eq 'version') {
|
|
|
|
$processes->{$sid}->{'version'} = $line->{'exe'};
|
|
|
|
if ($gen_heredoc == 1 && $gen_version eq $line->{'exe'}) {
|
|
|
|
# If we are generating data FOR the test script, replace
|
|
|
|
# the reported git.exe version with a reference to an
|
|
|
|
# environment variable. When our output is pasted into
|
|
|
|
# the test script, it will then be expanded in future
|
|
|
|
# test runs to the THEN current version of git.exe.
|
|
|
|
# We assume that the test script uses env var $V.
|
|
|
|
$processes->{$sid}->{'version'} = "\$V";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'start') {
|
|
|
|
$processes->{$sid}->{'argv'} = $line->{'argv'};
|
|
|
|
$processes->{$sid}->{'argv'}[0] = "_EXE_";
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'exit') {
|
|
|
|
$processes->{$sid}->{'exit_code'} = $line->{'code'};
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'atexit') {
|
|
|
|
$processes->{$sid}->{'exit_code'} = $line->{'code'};
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'error') {
|
|
|
|
# For HEREDOC purposes, use the error message format string if
|
|
|
|
# available, rather than the formatted message (which probably
|
|
|
|
# has an absolute pathname).
|
|
|
|
if (exists $line->{'fmt'}) {
|
|
|
|
push( @{$processes->{$sid}->{'errors'}}, $line->{'fmt'} );
|
|
|
|
}
|
|
|
|
elsif (exists $line->{'msg'}) {
|
|
|
|
push( @{$processes->{$sid}->{'errors'}}, $line->{'msg'} );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'cmd_path') {
|
|
|
|
## $processes->{$sid}->{'path'} = $line->{'path'};
|
|
|
|
#
|
|
|
|
# Like in the 'start' event, we need to replace the value of
|
|
|
|
# argv[0] with a token for HEREDOC purposes. However, the
|
|
|
|
# event is only emitted when RUNTIME_PREFIX is defined, so
|
|
|
|
# just omit it for testing purposes.
|
|
|
|
# $processes->{$sid}->{'path'} = "_EXE_";
|
|
|
|
}
|
tr2: log parent process name
It can be useful to tell who invoked Git - was it invoked manually by a
user via CLI or script? By an IDE? In some cases - like 'repo' tool -
we can influence the source code and set the GIT_TRACE2_PARENT_SID
environment variable from the caller process. In 'repo''s case, that
parent SID is manipulated to include the string "repo", which means we
can positively identify when Git was invoked by 'repo' tool. However,
identifying parents that way requires both that we know which tools
invoke Git and that we have the ability to modify the source code of
those tools. It cannot scale to keep up with the various IDEs and
wrappers which use Git, most of which we don't know about. Learning
which tools and wrappers invoke Git, and how, would give us insight to
decide where to improve Git's usability and performance.
Unfortunately, there's no cross-platform reliable way to gather the name
of the parent process. If procfs is present, we can use that; otherwise
we will need to discover the name another way. However, the process ID
should be sufficient to look up the process name on most platforms, so
that code may be shareable.
Git for Windows gathers similar information and logs it as a "data_json"
event. However, since "data_json" has a variable format, it is difficult
to parse effectively in some languages; instead, let's pursue a
dedicated "cmd_ancestry" event to record information about the ancestry
of the current process and a consistent, parseable way.
Git for Windows also gathers information about more than one generation
of parent. In Linux further ancestry info can be gathered with procfs,
but it's unwieldy to do so. In the interest of later moving Git for
Windows ancestry logging to the 'cmd_ancestry' event, and in the
interest of later adding more ancestry to the Linux implementation - or
of adding this functionality to other platforms which have an easier
time walking the process tree - let's make 'cmd_ancestry' accept an
array of parentage.
Signed-off-by: Emily Shaffer <emilyshaffer@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-07-22 03:27:07 +02:00
|
|
|
elsif ($event eq 'cmd_ancestry') {
|
|
|
|
# 'cmd_ancestry' is platform-specific and not implemented everywhere, so
|
|
|
|
# just skip it for testing purposes.
|
|
|
|
}
|
2019-02-22 23:25:10 +01:00
|
|
|
elsif ($event eq 'cmd_name') {
|
|
|
|
$processes->{$sid}->{'name'} = $line->{'name'};
|
|
|
|
$processes->{$sid}->{'hierarchy'} = $line->{'hierarchy'};
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'alias') {
|
|
|
|
$processes->{$sid}->{'alias'}->{'key'} = $line->{'alias'};
|
|
|
|
$processes->{$sid}->{'alias'}->{'argv'} = $line->{'argv'};
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'def_param') {
|
|
|
|
my $kv;
|
|
|
|
$kv->{'param'} = $line->{'param'};
|
|
|
|
$kv->{'value'} = $line->{'value'};
|
|
|
|
push( @{$processes->{$sid}->{'params'}}, $kv );
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'child_start') {
|
|
|
|
if ($show_children == 1) {
|
|
|
|
$processes->{$sid}->{'child'}->{$line->{'child_id'}}->{'child_class'} = $line->{'child_class'};
|
|
|
|
$processes->{$sid}->{'child'}->{$line->{'child_id'}}->{'child_argv'} = $line->{'argv'};
|
|
|
|
$processes->{$sid}->{'child'}->{$line->{'child_id'}}->{'child_argv'}[0] = "_EXE_";
|
|
|
|
$processes->{$sid}->{'child'}->{$line->{'child_id'}}->{'use_shell'} = $line->{'use_shell'} ? 1 : 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'child_exit') {
|
|
|
|
if ($show_children == 1) {
|
|
|
|
$processes->{$sid}->{'child'}->{$line->{'child_id'}}->{'child_code'} = $line->{'code'};
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
# TODO decide what information we want to test from thread events.
|
|
|
|
|
|
|
|
elsif ($event eq 'thread_start') {
|
|
|
|
if ($show_threads == 1) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'thread_exit') {
|
|
|
|
if ($show_threads == 1) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
# TODO decide what information we want to test from exec events.
|
|
|
|
|
|
|
|
elsif ($event eq 'exec') {
|
|
|
|
if ($show_exec == 1) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'exec_result') {
|
|
|
|
if ($show_exec == 1) {
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'def_param') {
|
|
|
|
# Accumulate parameter key/value pairs by key rather than in an array
|
|
|
|
# so that we get overwrite (last one wins) effects.
|
|
|
|
$processes->{$sid}->{'params'}->{$line->{'param'}} = $line->{'value'};
|
|
|
|
}
|
|
|
|
|
|
|
|
elsif ($event eq 'def_repo') {
|
|
|
|
# $processes->{$sid}->{'repos'}->{$line->{'repo'}} = $line->{'worktree'};
|
|
|
|
$processes->{$sid}->{'repos'}->{$line->{'repo'}} = "_WORKTREE_";
|
|
|
|
}
|
|
|
|
|
|
|
|
# A series of potentially nested and threaded region and data events
|
|
|
|
# is fundamentally incompatibile with the type of summary record we
|
|
|
|
# are building in this script. Since they are intended for
|
|
|
|
# perf-trace-like analysis rather than a result summary, we ignore
|
|
|
|
# most of them here.
|
|
|
|
|
|
|
|
# elsif ($event eq 'region_enter') {
|
|
|
|
# }
|
|
|
|
# elsif ($event eq 'region_leave') {
|
|
|
|
# }
|
|
|
|
|
|
|
|
elsif ($event eq 'data') {
|
|
|
|
my $cat = $line->{'category'};
|
|
|
|
if ($cat eq 'test_category') {
|
|
|
|
|
|
|
|
my $key = $line->{'key'};
|
|
|
|
my $value = $line->{'value'};
|
|
|
|
$processes->{$sid}->{'data'}->{$cat}->{$key} = $value;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
# This trace2 target does not emit 'printf' events.
|
|
|
|
#
|
|
|
|
# elsif ($event eq 'printf') {
|
|
|
|
# }
|
|
|
|
}
|
|
|
|
|
|
|
|
# Dump the resulting hash into something that we can compare against
|
|
|
|
# in the test script. These options make Dumper output look a little
|
|
|
|
# bit like JSON. Also convert variable references of the form "$VAR*"
|
|
|
|
# so that the matching HEREDOC doesn't need to escape it.
|
|
|
|
|
|
|
|
$Data::Dumper::Sortkeys = 1;
|
|
|
|
$Data::Dumper::Indent = 1;
|
|
|
|
$Data::Dumper::Purity = 1;
|
|
|
|
$Data::Dumper::Pair = ':';
|
|
|
|
|
|
|
|
my $out = Dumper($processes);
|
|
|
|
$out =~ s/'/"/g;
|
|
|
|
$out =~ s/\$VAR/VAR/g;
|
|
|
|
|
|
|
|
# Finally, if we're running this script to generate (manually confirmed)
|
|
|
|
# data to add to the test script, guard the indentation.
|
|
|
|
|
|
|
|
if ($gen_heredoc == 1) {
|
|
|
|
$out =~ s/^/\t\|/gms;
|
|
|
|
}
|
|
|
|
|
|
|
|
print $out;
|