git-commit-vandalism/t/t5000-tar-tree.sh

424 lines
11 KiB
Bash
Raw Normal View History

#!/bin/sh
#
# Copyright (C) 2005 Rene Scharfe
#
test_description='git archive and git get-tar-commit-id test
This test covers the topics of file contents, commit date handling and
commit id embedding:
The contents of the repository is compared to the extracted tar
archive. The repository contains simple text files, symlinks and a
binary file (/bin/sh). Only paths shorter than 99 characters are
used.
git archive applies the commit date to every file in the archive it
creates. The test sets the commit date to a specific value and checks
if the tar archive contains that value.
When giving git archive a commit id (in contrast to a tree id) it
embeds this commit id into the tar archive as a comment. The test
checks the ability of git get-tar-commit-id to figure it out from the
tar file.
'
. ./test-lib.sh
SUBSTFORMAT=%H%n
test_lazy_prereq TAR_NEEDS_PAX_FALLBACK '
(
mkdir pax &&
cd pax &&
"$TAR" xf "$TEST_DIRECTORY"/t5000/pax.tar &&
test -f PaxHeaders.1791/file
)
'
2013-12-03 14:21:40 +01:00
test_lazy_prereq GZIP 'gzip --version'
get_pax_header() {
file=$1
header=$2=
while read len rest
do
if test "$len" = $(echo "$len $rest" | wc -c)
then
case "$rest" in
$header*)
echo "${rest#$header}"
;;
esac
fi
done <"$file"
}
check_tar() {
tarfile=$1.tar
listfile=$1.lst
dir=$1
dir_with_prefix=$dir/$2
test_expect_success ' extract tar archive' '
(mkdir $dir && cd $dir && "$TAR" xf -) <$tarfile
'
test_expect_success TAR_NEEDS_PAX_FALLBACK ' interpret pax headers' '
(
cd $dir &&
for header in *.paxheader
do
data=${header%.paxheader}.data &&
if test -h $data || test -e $data
then
path=$(get_pax_header $header path) &&
if test -n "$path"
then
mv "$data" "$path"
fi
fi
done
)
'
test_expect_success ' validate filenames' '
(cd ${dir_with_prefix}a && find .) | sort >$listfile &&
test_cmp a.lst $listfile
'
test_expect_success ' validate file contents' '
diff -r a ${dir_with_prefix}a
'
}
test_expect_success 'setup' '
test_oid_cache <<-EOF
obj sha1:19f9c8273ec45a8938e6999cb59b3ff66739902a
obj sha256:3c666f798798601571f5cec0adb57ce4aba8546875e7693177e0535f34d2c49b
EOF
'
test_expect_success \
'populate workdir' \
'mkdir a &&
echo simple textfile >a/a &&
ten=0123456789 && hundred=$ten$ten$ten$ten$ten$ten$ten$ten$ten$ten &&
echo long filename >a/four$hundred &&
mkdir a/bin &&
test-tool genrandom "frotz" 500000 >a/bin/sh &&
printf "A\$Format:%s\$O" "$SUBSTFORMAT" >a/substfile1 &&
printf "A not substituted O" >a/substfile2 &&
if test_have_prereq SYMLINKS; then
ln -s a a/l1
else
printf %s a > a/l1
fi &&
(p=long_path_to_a_file && cd a &&
for depth in 1 2 3 4 5; do mkdir $p && cd $p; done &&
echo text >file_with_long_path) &&
(cd a && find .) | sort >a.lst'
test_expect_success \
'add ignored file' \
'echo ignore me >a/ignored &&
echo ignored export-ignore >.git/info/attributes'
test_expect_success 'add files to repository' '
git add a &&
GIT_COMMITTER_DATE="2005-05-27 22:00" git commit -m initial
'
test_expect_success 'setup export-subst' '
echo "substfile?" export-subst >>.git/info/attributes &&
git log --max-count=1 "--pretty=format:A${SUBSTFORMAT}O" HEAD \
>a/substfile1
'
test_expect_success \
'create bare clone' \
'git clone --bare . bare.git &&
cp .git/info/attributes bare.git/info/attributes'
test_expect_success \
'remove ignored file' \
'rm a/ignored'
test_expect_success \
'git archive' \
'git archive HEAD >b.tar'
check_tar b
test_expect_success 'git archive --prefix=prefix/' '
git archive --prefix=prefix/ HEAD >with_prefix.tar
'
check_tar with_prefix prefix/
test_expect_success 'git-archive --prefix=olde-' '
git archive --prefix=olde- HEAD >with_olde-prefix.tar
'
check_tar with_olde-prefix olde-
test_expect_success 'git archive on large files' '
test_config core.bigfilethreshold 1 &&
git archive HEAD >b3.tar &&
test_cmp_bin b.tar b3.tar
'
test_expect_success \
'git archive in a bare repo' \
'(cd bare.git && git archive HEAD) >b3.tar'
test_expect_success \
'git archive vs. the same in a bare repo' \
'test_cmp_bin b.tar b3.tar'
test_expect_success 'git archive with --output' \
'git archive --output=b4.tar HEAD &&
test_cmp_bin b.tar b4.tar'
test_expect_success 'git archive --remote' \
'git archive --remote=. HEAD >b5.tar &&
test_cmp_bin b.tar b5.tar'
test_expect_success 'git archive --remote with configured remote' '
git config remote.foo.url . &&
(
cd a &&
git archive --remote=foo --output=../b5-nick.tar HEAD
) &&
test_cmp_bin b.tar b5-nick.tar
'
test_expect_success \
'validate file modification time' \
'mkdir extract &&
"$TAR" xf b.tar -C extract a/a &&
test-tool chmtime --get extract/a/a >b.mtime &&
echo "1117231200" >expected.mtime &&
test_cmp expected.mtime b.mtime'
test_expect_success \
'git get-tar-commit-id' \
'git get-tar-commit-id <b.tar >b.commitid &&
test_cmp .git/$(git symbolic-ref HEAD) b.commitid'
test_expect_success 'git archive with --output, override inferred format' '
git archive --format=tar --output=d4.zip HEAD &&
test_cmp_bin b.tar d4.zip
'
test_expect_success GZIP 'git archive with --output and --remote creates .tgz' '
git archive --output=d5.tgz --remote=. HEAD &&
gzip -d -c <d5.tgz >d5.tar &&
test_cmp_bin b.tar d5.tar
'
test_expect_success 'git archive --list outside of a git repo' '
nongit git archive --list
'
test_expect_success 'git archive --remote outside of a git repo' '
git archive HEAD >expect.tar &&
nongit git archive --remote="$PWD" HEAD >actual.tar &&
test_cmp_bin expect.tar actual.tar
'
test_expect_success 'clients cannot access unreachable commits' '
test_commit unreachable &&
sha1=$(git rev-parse HEAD) &&
git reset --hard HEAD^ &&
git archive $sha1 >remote.tar &&
test_must_fail git archive --remote=. $sha1 >remote.tar
'
test_expect_success 'upload-archive can allow unreachable commits' '
test_commit unreachable1 &&
sha1=$(git rev-parse HEAD) &&
git reset --hard HEAD^ &&
git archive $sha1 >remote.tar &&
test_config uploadarchive.allowUnreachable true &&
git archive --remote=. $sha1 >remote.tar
'
test_expect_success 'setup tar filters' '
git config tar.tar.foo.command "tr ab ba" &&
git config tar.bar.command "tr ab ba" &&
git config tar.bar.remote true &&
git config tar.invalid baz
'
test_expect_success 'archive --list mentions user filter' '
git archive --list >output &&
grep "^tar\.foo\$" output &&
grep "^bar\$" output
'
test_expect_success 'archive --list shows only enabled remote filters' '
git archive --list --remote=. >output &&
! grep "^tar\.foo\$" output &&
grep "^bar\$" output
'
test_expect_success 'invoke tar filter by format' '
git archive --format=tar.foo HEAD >config.tar.foo &&
tr ab ba <config.tar.foo >config.tar &&
test_cmp_bin b.tar config.tar &&
git archive --format=bar HEAD >config.bar &&
tr ab ba <config.bar >config.tar &&
test_cmp_bin b.tar config.tar
'
test_expect_success 'invoke tar filter by extension' '
git archive -o config-implicit.tar.foo HEAD &&
test_cmp_bin config.tar.foo config-implicit.tar.foo &&
git archive -o config-implicit.bar HEAD &&
test_cmp_bin config.tar.foo config-implicit.bar
'
test_expect_success 'default output format remains tar' '
git archive -o config-implicit.baz HEAD &&
test_cmp_bin b.tar config-implicit.baz
'
test_expect_success 'extension matching requires dot' '
git archive -o config-implicittar.foo HEAD &&
test_cmp_bin b.tar config-implicittar.foo
'
test_expect_success 'only enabled filters are available remotely' '
test_must_fail git archive --remote=. --format=tar.foo HEAD \
>remote.tar.foo &&
git archive --remote=. --format=bar >remote.bar HEAD &&
test_cmp_bin remote.bar config.bar
'
test_expect_success GZIP 'git archive --format=tgz' '
git archive --format=tgz HEAD >j.tgz
'
test_expect_success GZIP 'git archive --format=tar.gz' '
git archive --format=tar.gz HEAD >j1.tar.gz &&
test_cmp_bin j.tgz j1.tar.gz
'
test_expect_success GZIP 'infer tgz from .tgz filename' '
git archive --output=j2.tgz HEAD &&
test_cmp_bin j.tgz j2.tgz
'
test_expect_success GZIP 'infer tgz from .tar.gz filename' '
git archive --output=j3.tar.gz HEAD &&
test_cmp_bin j.tgz j3.tar.gz
'
2013-12-03 14:21:40 +01:00
test_expect_success GZIP 'extract tgz file' '
gzip -d -c <j.tgz >j.tar &&
test_cmp_bin b.tar j.tar
'
test_expect_success GZIP 'remote tar.gz is allowed by default' '
git archive --remote=. --format=tar.gz HEAD >remote.tar.gz &&
test_cmp_bin j.tgz remote.tar.gz
'
test_expect_success GZIP 'remote tar.gz can be disabled' '
git config tar.tar.gz.remote false &&
test_must_fail git archive --remote=. --format=tar.gz HEAD \
>remote.tar.gz
'
test_expect_success 'archive and :(glob)' '
git archive -v HEAD -- ":(glob)**/sh" >/dev/null 2>actual &&
cat >expect <<EOF &&
a/
a/bin/
a/bin/sh
EOF
test_cmp expect actual
'
test_expect_success 'catch non-matching pathspec' '
test_must_fail git archive -v HEAD -- "*.abc" >/dev/null
'
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
# Pull the size and date of each entry in a tarfile using the system tar.
#
# We'll pull out only the year from the date; that avoids any question of
# timezones impacting the result (as long as we keep our test times away from a
# year boundary; our reference times are all in August).
#
# The output of tar_info is expected to be "<size> <year>", both in decimal. It
# ignores the return value of tar. We have to do this, because some of our test
# input is only partial (the real data is 64GB in some cases).
tar_info () {
"$TAR" tvf "$1" |
awk '{
split($4, date, "-")
print $3 " " date[1]
}'
}
# See if our system tar can handle a tar file with huge sizes and dates far in
# the future, and that we can actually parse its output.
#
# The reference file was generated by GNU tar, and the magic time and size are
# both octal 01000000000001, which overflows normal ustar fields.
test_lazy_prereq TAR_HUGE '
echo "68719476737 4147" >expect &&
tar_info "$TEST_DIRECTORY"/t5000/huge-and-future.tar >actual &&
test_cmp expect actual
'
test_expect_success LONG_IS_64BIT 'set up repository with huge blob' '
obj=$(test_oid obj) &&
path=$(test_oid_to_path $obj) &&
mkdir -p .git/objects/$(dirname $path) &&
cp "$TEST_DIRECTORY"/t5000/huge-object .git/objects/$path &&
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
rm -f .git/index &&
git update-index --add --cacheinfo 100644,$obj,huge &&
git commit -m huge
'
# We expect git to die with SIGPIPE here (otherwise we
# would generate the whole 64GB).
test_expect_success LONG_IS_64BIT 'generate tar with huge size' '
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
{
git archive HEAD
echo $? >exit-code
} | test_copy_bytes 4096 >huge.tar &&
echo 141 >expect &&
test_cmp expect exit-code
'
test_expect_success TAR_HUGE,LONG_IS_64BIT 'system tar can read our huge size' '
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
echo 68719476737 >expect &&
tar_info huge.tar | cut -d" " -f1 >actual &&
test_cmp expect actual
'
test_expect_success TIME_IS_64BIT 'set up repository with far-future commit' '
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
rm -f .git/index &&
echo content >file &&
git add file &&
GIT_COMMITTER_DATE="@68719476737 +0000" \
git commit -m "tempori parendum"
'
test_expect_success TIME_IS_64BIT 'generate tar with future mtime' '
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
git archive HEAD >future.tar
'
test_expect_success TAR_HUGE,TIME_IS_64BIT,TIME_T_IS_64BIT 'system tar can read our future mtime' '
t5000: test tar files that overflow ustar headers The ustar format only has room for 11 (or 12, depending on some implementations) octal digits for the size and mtime of each file. For values larger than this, we have to add pax extended headers to specify the real data, and git does not yet know how to do so. Before fixing that, let's start off with some test infrastructure, as designing portable and efficient tests for this is non-trivial. We want to use the system tar to check our output (because what we really care about is interoperability), but we can't rely on it: 1. being able to read pax headers 2. being able to handle huge sizes or mtimes 3. supporting a "t" format we can parse So as a prerequisite, we can feed the system tar a reference tarball to make sure it can handle these features. The reference tar here was created with: dd if=/dev/zero seek=64G bs=1 count=1 of=huge touch -d @68719476737 huge tar cf - --format=pax | head -c 2048 using GNU tar. Note that this is not a complete tarfile, but it's enough to contain the headers we want to examine. Likewise, we need to convince git that it has a 64GB blob to output. Running "git add" on that 64GB file takes many minutes of CPU, and even compressed, the result is 64MB. So again, I pre-generated that loose object, and then took only the first 2k of it. That should be enough to generate 2MB of data before hitting an inflate error, which is plenty for us to generate the tar header (and then die of SIGPIPE while streaming the rest out). The tests are split so that we test as much as we can even with an uncooperative system tar. This actually catches the current breakage (which is that we die("BUG") trying to write the ustar header) on every system, and then on systems where we can, we go farther and actually verify the result. Helped-by: Robin H. Johnson <robbat2@gentoo.org> Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-30 11:08:57 +02:00
echo 4147 >expect &&
tar_info future.tar | cut -d" " -f2 >actual &&
test_cmp expect actual
'
test_done