git-commit-vandalism/t/t5324-split-commit-graph.sh

647 lines
20 KiB
Bash
Raw Normal View History

#!/bin/sh
test_description='split commit graph'
. ./test-lib.sh
GIT_TEST_COMMIT_GRAPH=0
GIT_TEST_COMMIT_GRAPH_CHANGED_PATHS=0
test_expect_success 'setup repo' '
git init &&
git config core.commitGraph true &&
git config gc.writeCommitGraph false &&
infodir=".git/objects/info" &&
graphdir="$infodir/commit-graphs" &&
test_oid_cache <<-EOM
commit-graph: implement generation data chunk As discovered by Ævar, we cannot increment graph version to distinguish between generation numbers v1 and v2 [1]. Thus, one of pre-requistes before implementing generation number v2 was to distinguish between graph versions in a backwards compatible manner. We are going to introduce a new chunk called Generation DATa chunk (or GDAT). GDAT will store corrected committer date offsets whereas CDAT will still store topological level. Old Git does not understand GDAT chunk and would ignore it, reading topological levels from CDAT. New Git can parse GDAT and take advantage of newer generation numbers, falling back to topological levels when GDAT chunk is missing (as it would happen with a commit-graph written by old Git). We introduce a test environment variable 'GIT_TEST_COMMIT_GRAPH_NO_GDAT' which forces commit-graph file to be written without generation data chunk to emulate a commit-graph file written by old Git. To minimize the space required to store corrrected commit date, Git stores corrected commit date offsets into the commit-graph file, instea of corrected commit dates. This saves us 4 bytes per commit, decreasing the GDAT chunk size by half, but it's possible for the offset to overflow the 4-bytes allocated for storage. As such overflows are and should be exceedingly rare, we use the following overflow management scheme: We introduce a new commit-graph chunk, Generation Data OVerflow ('GDOV') to store corrected commit dates for commits with offsets greater than GENERATION_NUMBER_V2_OFFSET_MAX. If the offset is greater than GENERATION_NUMBER_V2_OFFSET_MAX, we set the MSB of the offset and the other bits store the position of corrected commit date in GDOV chunk, similar to how Extra Edge List is maintained. We test the overflow-related code with the following repo history: F - N - U / \ U - N - U N \ / N - F - N Where the commits denoted by U have committer date of zero seconds since Unix epoch, the commits denoted by N have committer date of 1112354055 (default committer date for the test suite) seconds since Unix epoch and the commits denoted by F have committer date of (2 ^ 31 - 2) seconds since Unix epoch. The largest offset observed is 2 ^ 31, just large enough to overflow. [1]: https://lore.kernel.org/git/87a7gdspo4.fsf@evledraar.gmail.com/ Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:15 +01:00
shallow sha1:2132
shallow sha256:2436
commit-graph: implement generation data chunk As discovered by Ævar, we cannot increment graph version to distinguish between generation numbers v1 and v2 [1]. Thus, one of pre-requistes before implementing generation number v2 was to distinguish between graph versions in a backwards compatible manner. We are going to introduce a new chunk called Generation DATa chunk (or GDAT). GDAT will store corrected committer date offsets whereas CDAT will still store topological level. Old Git does not understand GDAT chunk and would ignore it, reading topological levels from CDAT. New Git can parse GDAT and take advantage of newer generation numbers, falling back to topological levels when GDAT chunk is missing (as it would happen with a commit-graph written by old Git). We introduce a test environment variable 'GIT_TEST_COMMIT_GRAPH_NO_GDAT' which forces commit-graph file to be written without generation data chunk to emulate a commit-graph file written by old Git. To minimize the space required to store corrrected commit date, Git stores corrected commit date offsets into the commit-graph file, instea of corrected commit dates. This saves us 4 bytes per commit, decreasing the GDAT chunk size by half, but it's possible for the offset to overflow the 4-bytes allocated for storage. As such overflows are and should be exceedingly rare, we use the following overflow management scheme: We introduce a new commit-graph chunk, Generation Data OVerflow ('GDOV') to store corrected commit dates for commits with offsets greater than GENERATION_NUMBER_V2_OFFSET_MAX. If the offset is greater than GENERATION_NUMBER_V2_OFFSET_MAX, we set the MSB of the offset and the other bits store the position of corrected commit date in GDOV chunk, similar to how Extra Edge List is maintained. We test the overflow-related code with the following repo history: F - N - U / \ U - N - U N \ / N - F - N Where the commits denoted by U have committer date of zero seconds since Unix epoch, the commits denoted by N have committer date of 1112354055 (default committer date for the test suite) seconds since Unix epoch and the commits denoted by F have committer date of (2 ^ 31 - 2) seconds since Unix epoch. The largest offset observed is 2 ^ 31, just large enough to overflow. [1]: https://lore.kernel.org/git/87a7gdspo4.fsf@evledraar.gmail.com/ Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:15 +01:00
base sha1:1408
base sha256:1528
commit-graph: use the "hash version" byte The commit-graph format reserved a byte among the header of the file to store a "hash version". During the SHA-256 work, this was not modified because file formats are not necessarily intended to work across hash versions. If a repository has SHA-256 as its hash algorithm, it automatically up-shifts the lengths of object names in all necessary formats. However, since we have this byte available for adjusting the version, we can make the file formats more obviously incompatible instead of relying on other context from the repository. Update the oid_version() method in commit-graph.c to add a new value, 2, for sha-256. This automatically writes the new value in a SHA-256 repository _and_ verifies the value is correct. This is a breaking change relative to the current 'master' branch since 092b677 (Merge branch 'bc/sha-256-cvs-svn-updates', 2020-08-13) but it is not breaking relative to any released version of Git. The test impact is relatively minor: the output of 'test-tool read-graph' lists the header information, so those instances of '1' need to be replaced with a variable determined by GIT_TEST_DEFAULT_HASH. A more careful test is added that specifically creates a repository of each type then swaps the commit-graph files. The important value here is that the "git log" command succeeds while writing a message to stderr. Helped-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Reviewed-by: brian m. carlson <sandals@crustytoothpaste.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-08-17 16:04:47 +02:00
oid_version sha1:1
oid_version sha256:2
EOM
'
graph_read_expect() {
NUM_BASE=0
if test ! -z $2
then
NUM_BASE=$2
fi
cat >expect <<- EOF
commit-graph: implement generation data chunk As discovered by Ævar, we cannot increment graph version to distinguish between generation numbers v1 and v2 [1]. Thus, one of pre-requistes before implementing generation number v2 was to distinguish between graph versions in a backwards compatible manner. We are going to introduce a new chunk called Generation DATa chunk (or GDAT). GDAT will store corrected committer date offsets whereas CDAT will still store topological level. Old Git does not understand GDAT chunk and would ignore it, reading topological levels from CDAT. New Git can parse GDAT and take advantage of newer generation numbers, falling back to topological levels when GDAT chunk is missing (as it would happen with a commit-graph written by old Git). We introduce a test environment variable 'GIT_TEST_COMMIT_GRAPH_NO_GDAT' which forces commit-graph file to be written without generation data chunk to emulate a commit-graph file written by old Git. To minimize the space required to store corrrected commit date, Git stores corrected commit date offsets into the commit-graph file, instea of corrected commit dates. This saves us 4 bytes per commit, decreasing the GDAT chunk size by half, but it's possible for the offset to overflow the 4-bytes allocated for storage. As such overflows are and should be exceedingly rare, we use the following overflow management scheme: We introduce a new commit-graph chunk, Generation Data OVerflow ('GDOV') to store corrected commit dates for commits with offsets greater than GENERATION_NUMBER_V2_OFFSET_MAX. If the offset is greater than GENERATION_NUMBER_V2_OFFSET_MAX, we set the MSB of the offset and the other bits store the position of corrected commit date in GDOV chunk, similar to how Extra Edge List is maintained. We test the overflow-related code with the following repo history: F - N - U / \ U - N - U N \ / N - F - N Where the commits denoted by U have committer date of zero seconds since Unix epoch, the commits denoted by N have committer date of 1112354055 (default committer date for the test suite) seconds since Unix epoch and the commits denoted by F have committer date of (2 ^ 31 - 2) seconds since Unix epoch. The largest offset observed is 2 ^ 31, just large enough to overflow. [1]: https://lore.kernel.org/git/87a7gdspo4.fsf@evledraar.gmail.com/ Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:15 +01:00
header: 43475048 1 $(test_oid oid_version) 4 $NUM_BASE
num_commits: $1
commit-graph: implement generation data chunk As discovered by Ævar, we cannot increment graph version to distinguish between generation numbers v1 and v2 [1]. Thus, one of pre-requistes before implementing generation number v2 was to distinguish between graph versions in a backwards compatible manner. We are going to introduce a new chunk called Generation DATa chunk (or GDAT). GDAT will store corrected committer date offsets whereas CDAT will still store topological level. Old Git does not understand GDAT chunk and would ignore it, reading topological levels from CDAT. New Git can parse GDAT and take advantage of newer generation numbers, falling back to topological levels when GDAT chunk is missing (as it would happen with a commit-graph written by old Git). We introduce a test environment variable 'GIT_TEST_COMMIT_GRAPH_NO_GDAT' which forces commit-graph file to be written without generation data chunk to emulate a commit-graph file written by old Git. To minimize the space required to store corrrected commit date, Git stores corrected commit date offsets into the commit-graph file, instea of corrected commit dates. This saves us 4 bytes per commit, decreasing the GDAT chunk size by half, but it's possible for the offset to overflow the 4-bytes allocated for storage. As such overflows are and should be exceedingly rare, we use the following overflow management scheme: We introduce a new commit-graph chunk, Generation Data OVerflow ('GDOV') to store corrected commit dates for commits with offsets greater than GENERATION_NUMBER_V2_OFFSET_MAX. If the offset is greater than GENERATION_NUMBER_V2_OFFSET_MAX, we set the MSB of the offset and the other bits store the position of corrected commit date in GDOV chunk, similar to how Extra Edge List is maintained. We test the overflow-related code with the following repo history: F - N - U / \ U - N - U N \ / N - F - N Where the commits denoted by U have committer date of zero seconds since Unix epoch, the commits denoted by N have committer date of 1112354055 (default committer date for the test suite) seconds since Unix epoch and the commits denoted by F have committer date of (2 ^ 31 - 2) seconds since Unix epoch. The largest offset observed is 2 ^ 31, just large enough to overflow. [1]: https://lore.kernel.org/git/87a7gdspo4.fsf@evledraar.gmail.com/ Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:15 +01:00
chunks: oid_fanout oid_lookup commit_metadata generation_data
options:
EOF
test-tool read-graph >output &&
test_cmp expect output
}
test_expect_success POSIXPERM 'tweak umask for modebit tests' '
umask 022
'
test_expect_success 'create commits and write commit-graph' '
for i in $(test_seq 3)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git commit-graph write --reachable &&
test_path_is_file $infodir/commit-graph &&
graph_read_expect 3
'
graph_git_two_modes() {
git ${2:+ -C "$2"} -c core.commitGraph=true $1 >output &&
git ${2:+ -C "$2"} -c core.commitGraph=false $1 >expect &&
test_cmp expect output
}
graph_git_behavior() {
MSG=$1
BRANCH=$2
COMPARE=$3
DIR=$4
test_expect_success "check normal git operations: $MSG" '
graph_git_two_modes "log --oneline $BRANCH" "$DIR" &&
graph_git_two_modes "log --topo-order $BRANCH" "$DIR" &&
graph_git_two_modes "log --graph $COMPARE..$BRANCH" "$DIR" &&
graph_git_two_modes "branch -vv" "$DIR" &&
graph_git_two_modes "merge-base -a $BRANCH $COMPARE" "$DIR"
'
}
graph_git_behavior 'graph exists' commits/3 commits/1
verify_chain_files_exist() {
for hash in $(cat $1/commit-graph-chain)
do
test_path_is_file $1/graph-$hash.graph || return 1
done
}
test_expect_success 'add more commits, and write a new base graph' '
git reset --hard commits/1 &&
for i in $(test_seq 4 5)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git reset --hard commits/2 &&
for i in $(test_seq 6 10)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git reset --hard commits/2 &&
git merge commits/4 &&
git branch merge/1 &&
git reset --hard commits/4 &&
git merge commits/6 &&
git branch merge/2 &&
git commit-graph write --reachable &&
graph_read_expect 12
'
test_expect_success 'fork and fail to base a chain on a commit-graph file' '
test_when_finished rm -rf fork &&
git clone . fork &&
(
cd fork &&
rm .git/objects/info/commit-graph &&
echo "$(pwd)/../.git/objects" >.git/objects/info/alternates &&
test_commit new-commit &&
git commit-graph write --reachable --split &&
test_path_is_file $graphdir/commit-graph-chain &&
test_line_count = 1 $graphdir/commit-graph-chain &&
verify_chain_files_exist $graphdir
)
'
test_expect_success 'add three more commits, write a tip graph' '
git reset --hard commits/3 &&
git merge merge/1 &&
git merge commits/5 &&
git merge merge/2 &&
git branch merge/3 &&
git commit-graph write --reachable --split &&
test_path_is_missing $infodir/commit-graph &&
test_path_is_file $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 2 graph-files &&
verify_chain_files_exist $graphdir
'
graph_git_behavior 'split commit-graph: merge 3 vs 2' merge/3 merge/2
test_expect_success 'add one commit, write a tip graph' '
test_commit 11 &&
git branch commits/11 &&
git commit-graph write --reachable --split &&
test_path_is_missing $infodir/commit-graph &&
test_path_is_file $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 3 graph-files &&
verify_chain_files_exist $graphdir
'
graph_git_behavior 'three-layer commit-graph: commit 11 vs 6' commits/11 commits/6
test_expect_success 'add one commit, write a merged graph' '
test_commit 12 &&
git branch commits/12 &&
git commit-graph write --reachable --split &&
test_path_is_file $graphdir/commit-graph-chain &&
test_line_count = 2 $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 2 graph-files &&
verify_chain_files_exist $graphdir
'
graph_git_behavior 'merged commit-graph: commit 12 vs 6' commits/12 commits/6
test_expect_success 'create fork and chain across alternate' '
git clone . fork &&
(
cd fork &&
git config core.commitGraph true &&
rm -rf $graphdir &&
echo "$(pwd)/../.git/objects" >.git/objects/info/alternates &&
test_commit 13 &&
git branch commits/13 &&
git commit-graph write --reachable --split &&
test_path_is_file $graphdir/commit-graph-chain &&
test_line_count = 3 $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files &&
git -c core.commitGraph=true rev-list HEAD >expect &&
git -c core.commitGraph=false rev-list HEAD >actual &&
test_cmp expect actual &&
test_commit 14 &&
git commit-graph write --reachable --split --object-dir=.git/objects/ &&
test_line_count = 3 $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files
)
'
if test -d fork
then
graph_git_behavior 'alternate: commit 13 vs 6' commits/13 origin/commits/6 "fork"
fi
test_expect_success 'test merge stragety constants' '
git clone . merge-2 &&
(
cd merge-2 &&
git config core.commitGraph true &&
test_line_count = 2 $graphdir/commit-graph-chain &&
test_commit 14 &&
git commit-graph write --reachable --split --size-multiple=2 &&
test_line_count = 3 $graphdir/commit-graph-chain
) &&
git clone . merge-10 &&
(
cd merge-10 &&
git config core.commitGraph true &&
test_line_count = 2 $graphdir/commit-graph-chain &&
test_commit 14 &&
git commit-graph write --reachable --split --size-multiple=10 &&
test_line_count = 1 $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files
) &&
git clone . merge-10-expire &&
(
cd merge-10-expire &&
git config core.commitGraph true &&
test_line_count = 2 $graphdir/commit-graph-chain &&
test_commit 15 &&
touch $graphdir/to-delete.graph $graphdir/to-keep.graph &&
test-tool chmtime =1546362000 $graphdir/to-delete.graph &&
test-tool chmtime =1546362001 $graphdir/to-keep.graph &&
git commit-graph write --reachable --split --size-multiple=10 \
--expire-time="2019-01-01 12:00 -05:00" &&
test_line_count = 1 $graphdir/commit-graph-chain &&
test_path_is_missing $graphdir/to-delete.graph &&
test_path_is_file $graphdir/to-keep.graph &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 3 graph-files
) &&
git clone --no-hardlinks . max-commits &&
(
cd max-commits &&
git config core.commitGraph true &&
test_line_count = 2 $graphdir/commit-graph-chain &&
test_commit 16 &&
test_commit 17 &&
git commit-graph write --reachable --split --max-commits=1 &&
test_line_count = 1 $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files
)
'
test_expect_success 'remove commit-graph-chain file after flattening' '
git clone . flatten &&
(
cd flatten &&
test_line_count = 2 $graphdir/commit-graph-chain &&
git commit-graph write --reachable &&
test_path_is_missing $graphdir/commit-graph-chain &&
ls $graphdir >graph-files &&
test_line_count = 0 graph-files
)
'
corrupt_file() {
file=$1
pos=$2
data="${3:-\0}"
chmod a+w "$file" &&
printf "$data" | dd of="$file" bs=1 seek="$pos" conv=notrunc
}
test_expect_success 'verify hashes along chain, even in shallow' '
git clone --no-hardlinks . verify &&
(
cd verify &&
git commit-graph verify &&
base_file=$graphdir/graph-$(head -n 1 $graphdir/commit-graph-chain).graph &&
corrupt_file "$base_file" $(test_oid shallow) "\01" &&
test_must_fail git commit-graph verify --shallow 2>test_err &&
grep -v "^+" test_err >err &&
test_i18ngrep "incorrect checksum" err
)
'
test_expect_success 'verify --shallow does not check base contents' '
git clone --no-hardlinks . verify-shallow &&
(
cd verify-shallow &&
git commit-graph verify &&
base_file=$graphdir/graph-$(head -n 1 $graphdir/commit-graph-chain).graph &&
corrupt_file "$base_file" 1000 "\01" &&
git commit-graph verify --shallow &&
test_must_fail git commit-graph verify 2>test_err &&
grep -v "^+" test_err >err &&
test_i18ngrep "incorrect checksum" err
)
'
test_expect_success 'warn on base graph chunk incorrect' '
git clone --no-hardlinks . base-chunk &&
(
cd base-chunk &&
git commit-graph verify &&
base_file=$graphdir/graph-$(tail -n 1 $graphdir/commit-graph-chain).graph &&
corrupt_file "$base_file" $(test_oid base) "\01" &&
git commit-graph verify --shallow 2>test_err &&
grep -v "^+" test_err >err &&
test_i18ngrep "commit-graph chain does not match" err
)
'
test_expect_success 'verify after commit-graph-chain corruption' '
git clone --no-hardlinks . verify-chain &&
(
cd verify-chain &&
corrupt_file "$graphdir/commit-graph-chain" 60 "G" &&
git commit-graph verify 2>test_err &&
grep -v "^+" test_err >err &&
test_i18ngrep "invalid commit-graph chain" err &&
corrupt_file "$graphdir/commit-graph-chain" 60 "A" &&
git commit-graph verify 2>test_err &&
grep -v "^+" test_err >err &&
test_i18ngrep "unable to find all commit-graph files" err
)
'
test_expect_success 'verify across alternates' '
git clone --no-hardlinks . verify-alt &&
(
cd verify-alt &&
rm -rf $graphdir &&
altdir="$(pwd)/../.git/objects" &&
echo "$altdir" >.git/objects/info/alternates &&
git commit-graph verify --object-dir="$altdir/" &&
test_commit extra &&
git commit-graph write --reachable --split &&
tip_file=$graphdir/graph-$(tail -n 1 $graphdir/commit-graph-chain).graph &&
corrupt_file "$tip_file" 100 "\01" &&
test_must_fail git commit-graph verify --shallow 2>test_err &&
grep -v "^+" test_err >err &&
test_i18ngrep "commit-graph has incorrect fanout value" err
)
'
test_expect_success 'add octopus merge' '
git reset --hard commits/10 &&
git merge commits/3 commits/4 &&
git branch merge/octopus &&
git commit-graph write --reachable --split &&
git commit-graph verify --progress 2>err &&
commit-graph: fix bug around octopus merges In 1771be90 "commit-graph: merge commit-graph chains" (2019-06-18), the method sort_and_scan_merged_commits() was added to merge the commit lists of two commit-graph files in the incremental format. Unfortunately, there was an off-by-one error in that method around incrementing num_extra_edges, which leads to an incorrect offset for the base graph chunk. When we store an octopus merge in the commit-graph file, we store the first parent in the normal place, but use the second parent position to point into the "extra edges" chunk where the remaining parents exist. This means we should be adding "num_parents - 1" edges to this list, not "num_parents - 2". That is the basic error. The reason this was not caught in the test suite is more subtle. In 5324-split-commit-graph.sh, we test creating an octopus merge and adding it to the tip of a commit-graph chain, then verify the result. This _should_ have caught the problem, except that when we load the commit-graph files we were overly careful to not fail when the commit-graph chain does not match. This care was on purpose to avoid race conditions as one process reads the chain and another process modifies it. In such a case, the reading process outputs the following message to stderr: warning: commit-graph chain does not match These warnings are output in the test suite, but ignored. By checking the stderr of `git commit-graph verify` to include the expected progress output, it will now catch this error. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-08-05 18:43:41 +02:00
test_line_count = 3 err &&
test_i18ngrep ! warning err &&
test_line_count = 3 $graphdir/commit-graph-chain
'
graph_git_behavior 'graph exists' merge/octopus commits/12
test_expect_success 'split across alternate where alternate is not split' '
git commit-graph write --reachable &&
test_path_is_file .git/objects/info/commit-graph &&
cp .git/objects/info/commit-graph . &&
git clone --no-hardlinks . alt-split &&
(
cd alt-split &&
rm -f .git/objects/info/commit-graph &&
echo "$(pwd)"/../.git/objects >.git/objects/info/alternates &&
test_commit 18 &&
git commit-graph write --reachable --split &&
test_line_count = 1 $graphdir/commit-graph-chain
) &&
test_cmp commit-graph .git/objects/info/commit-graph
'
test_expect_success '--split=no-merge always writes an incremental' '
test_when_finished rm -rf a b &&
rm -rf $graphdir $infodir/commit-graph &&
git reset --hard commits/2 &&
git rev-list HEAD~1 >a &&
git rev-list HEAD >b &&
git commit-graph write --split --stdin-commits <a &&
git commit-graph write --split=no-merge --stdin-commits <b &&
test_line_count = 2 $graphdir/commit-graph-chain
'
builtin/commit-graph.c: introduce split strategy 'replace' When using split commit-graphs, it is sometimes useful to completely replace the commit-graph chain with a new base. For example, consider a scenario in which a repository builds a new commit-graph incremental for each push. Occasionally (say, after some fixed number of pushes), they may wish to rebuild the commit-graph chain with all reachable commits. They can do so with $ git commit-graph write --reachable but this removes the chain entirely and replaces it with a single commit-graph in 'objects/info/commit-graph'. Unfortunately, this means that the next push will have to move this commit-graph into the first layer of a new chain, and then write its new commits on top. Avoid such copying entirely by allowing the caller to specify that they wish to replace the entirety of their commit-graph chain, while also specifying that the new commit-graph should become the basis of a fresh, length-one chain. This addresses the above situation by making it possible for the caller to instead write: $ git commit-graph write --reachable --split=replace which writes a new length-one chain to 'objects/info/commit-graphs', making the commit-graph incremental generated by the subsequent push relatively cheap by avoiding the aforementioned copy. In order to do this, remove an assumption in 'write_commit_graph_file' that chains are always at least two incrementals long. Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-04-14 06:04:17 +02:00
test_expect_success '--split=replace replaces the chain' '
rm -rf $graphdir $infodir/commit-graph &&
git reset --hard commits/3 &&
git rev-list -1 HEAD~2 >a &&
git rev-list -1 HEAD~1 >b &&
git rev-list -1 HEAD >c &&
git commit-graph write --split=no-merge --stdin-commits <a &&
git commit-graph write --split=no-merge --stdin-commits <b &&
git commit-graph write --split=no-merge --stdin-commits <c &&
test_line_count = 3 $graphdir/commit-graph-chain &&
git commit-graph write --stdin-commits --split=replace <b &&
test_path_is_missing $infodir/commit-graph &&
test_path_is_file $graphdir/commit-graph-chain &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files &&
verify_chain_files_exist $graphdir &&
graph_read_expect 2
'
commit-graph.c: gracefully handle file descriptor exhaustion When writing a layered commit-graph, the commit-graph machinery uses 'commit_graph_filenames_after' and 'commit_graph_hash_after' to keep track of the layers in the chain that we are in the process of writing. When the number of commit-graph layers shrinks, we initialize all entries in the aforementioned arrays, because we know the structure of the new commit-graph chain immediately (since there are no new layers, there are no unknown hash values). But when the number of commit-graph layers grows (i.e., that 'num_commit_graphs_after > num_commit_graphs_before'), then we leave some entries in the filenames and hashes arrays as uninitialized, because we will fill them in later as those values become available. For instance, we rely on 'write_commit_graph_file's to store the filename and hash of the last layer in the new chain, which is the one that it is responsible for writing. But, it's possible that 'write_commit_graph_file' may fail, e.g., from file descriptor exhaustion. In this case it is possible that 'git_mkstemp_mode' will fail, and that function will return early *before* setting the values for the last commit-graph layer's filename and hash. This causes a number of upleasant side-effects. For instance, trying to 'free()' each entry in 'ctx->commit_graph_filenames_after' (and similarly for the hashes array) causes us to 'free()' uninitialized memory, since the area is allocated with 'malloc()' and is therefore subject to contain garbage (which is left alone when 'write_commit_graph_file' returns early). This can manifest in other issues, like a general protection fault, and/or leaving a stray 'commit-graph-chain.lock' around after the process dies. (The reasoning for this is still a mystery to me, since we'd otherwise usually expect the kernel to run tempfile.c's 'atexit()' handlers in the case of a normal death...) To resolve this, initialize the memory with 'CALLOC_ARRAY' so that uninitialized entries are filled with zeros, and can thus be 'free()'d as a noop instead of causing a fault. Helped-by: Jeff King <peff@peff.net> Helped-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-04-23 23:41:09 +02:00
test_expect_success ULIMIT_FILE_DESCRIPTORS 'handles file descriptor exhaustion' '
git init ulimit &&
(
cd ulimit &&
for i in $(test_seq 64)
do
test_commit $i &&
run_with_limited_open_files test_might_fail git commit-graph write \
commit-graph.c: gracefully handle file descriptor exhaustion When writing a layered commit-graph, the commit-graph machinery uses 'commit_graph_filenames_after' and 'commit_graph_hash_after' to keep track of the layers in the chain that we are in the process of writing. When the number of commit-graph layers shrinks, we initialize all entries in the aforementioned arrays, because we know the structure of the new commit-graph chain immediately (since there are no new layers, there are no unknown hash values). But when the number of commit-graph layers grows (i.e., that 'num_commit_graphs_after > num_commit_graphs_before'), then we leave some entries in the filenames and hashes arrays as uninitialized, because we will fill them in later as those values become available. For instance, we rely on 'write_commit_graph_file's to store the filename and hash of the last layer in the new chain, which is the one that it is responsible for writing. But, it's possible that 'write_commit_graph_file' may fail, e.g., from file descriptor exhaustion. In this case it is possible that 'git_mkstemp_mode' will fail, and that function will return early *before* setting the values for the last commit-graph layer's filename and hash. This causes a number of upleasant side-effects. For instance, trying to 'free()' each entry in 'ctx->commit_graph_filenames_after' (and similarly for the hashes array) causes us to 'free()' uninitialized memory, since the area is allocated with 'malloc()' and is therefore subject to contain garbage (which is left alone when 'write_commit_graph_file' returns early). This can manifest in other issues, like a general protection fault, and/or leaving a stray 'commit-graph-chain.lock' around after the process dies. (The reasoning for this is still a mystery to me, since we'd otherwise usually expect the kernel to run tempfile.c's 'atexit()' handlers in the case of a normal death...) To resolve this, initialize the memory with 'CALLOC_ARRAY' so that uninitialized entries are filled with zeros, and can thus be 'free()'d as a noop instead of causing a fault. Helped-by: Jeff King <peff@peff.net> Helped-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-04-23 23:41:09 +02:00
--split=no-merge --reachable || return 1
done
)
'
while read mode modebits
do
test_expect_success POSIXPERM "split commit-graph respects core.sharedrepository $mode" '
rm -rf $graphdir $infodir/commit-graph &&
git reset --hard commits/1 &&
test_config core.sharedrepository "$mode" &&
git commit-graph write --split --reachable &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files &&
echo "$modebits" >expect &&
test_modebits $graphdir/graph-*.graph >actual &&
test_cmp expect actual &&
test_modebits $graphdir/commit-graph-chain >actual &&
test_cmp expect actual
'
done <<\EOF
0666 -r--r--r--
0600 -r--------
EOF
commit-graph: introduce 'get_bloom_filter_settings()' Many places in the code often need a pointer to the commit-graph's 'struct bloom_filter_settings', in which case they often take the value from the top-most commit-graph. In the non-split case, this works as expected. In the split case, however, things get a little tricky. Not all layers in a chain of incremental commit-graphs are required to themselves have Bloom data, and so whether or not some part of the code uses Bloom filters depends entirely on whether or not the top-most level of the commit-graph chain has Bloom filters. This has been the behavior since Bloom filters were introduced, and has been codified into the tests since a759bfa9ee (t4216: add end to end tests for git log with Bloom filters, 2020-04-06). In fact, t4216.130 requires that Bloom filters are not used in exactly the case described earlier. There is no reason that this needs to be the case, since it is perfectly valid for commits in an earlier layer to have Bloom filters when commits in a newer layer do not. Since Bloom settings are guaranteed in practice to be the same for any layer in a chain that has Bloom data, it is sufficient to traverse the '->base_graph' pointer until either (1) a non-null 'struct bloom_filter_settings *' is found, or (2) until we are at the root of the commit-graph chain. Introduce a 'get_bloom_filter_settings()' function that does just this, and use it instead of purely dereferencing the top-most graph's '->bloom_filter_settings' pointer. While we're at it, add an additional test in t5324 to guard against code in the commit-graph writing machinery that doesn't correctly handle a NULL 'struct bloom_filter *'. Co-authored-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Taylor Blau <me@ttaylorr.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-09 17:22:44 +02:00
test_expect_success '--split=replace with partial Bloom data' '
rm -rf $graphdir $infodir/commit-graph &&
git reset --hard commits/3 &&
git rev-list -1 HEAD~2 >a &&
git rev-list -1 HEAD~1 >b &&
git commit-graph write --split=no-merge --stdin-commits --changed-paths <a &&
git commit-graph write --split=no-merge --stdin-commits <b &&
git commit-graph write --split=replace --stdin-commits --changed-paths <c &&
ls $graphdir/graph-*.graph >graph-files &&
test_line_count = 1 graph-files &&
verify_chain_files_exist $graphdir
'
commit-graph: ignore duplicates when merging layers Thomas reported [1] that a "git fetch" command was failing with an error saying "unexpected duplicate commit id". The root cause is that they had fetch.writeCommitGraph enabled which generates commit-graph chains, and this instance was merging two layers that both contained the same commit ID. [1] https://lore.kernel.org/git/55f8f00c-a61c-67d4-889e-a9501c596c39@virtuell-zuhause.de/ The initial assumption is that Git would not write a commit ID into a commit-graph layer if it already exists in a lower commit-graph layer. Somehow, this specific case did get into that situation, leading to this error. While unexpected, this isn't actually invalid (as long as the two layers agree on the metadata for the commit). When we parse a commit that does not have a graph_pos in the commit_graph_data_slab, we use binary search in the commit-graph layers to find the commit and set graph_pos. That position is never used again in this case. However, when we parse a commit from the commit-graph file, we load its parents from the commit-graph and assign graph_pos at that point. If those parents were already parsed from the commit-graph, then nothing needs to be done. Otherwise, this graph_pos is a valid position in the commit-graph so we can parse the parents, when necessary. Thus, this die() is too aggressive. The easiest thing to do would be to ignore the duplicates. If we only ignore the duplicates, then we will produce a commit-graph that has identical commit IDs listed in adjacent positions. This excess data will never be removed from the commit-graph, which could cascade into significantly bloated file sizes. Thankfully, we can collapse the list to erase the duplicate commit pointers. This allows us to get the end result we want without extra memory costs and minimal CPU time. The root cause is due to disabling core.commitGraph, which prevents parsing commits from the lower layers during a 'git commit-graph write --split' command. Since we use the 'graph_pos' value to determine whether a commit is in a lower layer, we never discover that those commits are already in the commit-graph chain and add them to the top layer. This layer is then merged down, creating duplicates. The test added in t5324-split-commit-graph.sh fails without this change. However, we still have not completely removed the need for this duplicate check. That will come in a follow-up change. Reported-by: Thomas Braun <thomas.braun@virtuell-zuhause.de> Helped-by: Taylor Blau <me@ttaylorr.com> Co-authored-by: Jeff King <peff@peff.net> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-10-09 22:53:51 +02:00
test_expect_success 'prevent regression for duplicate commits across layers' '
git init dup &&
git -C dup commit --allow-empty -m one &&
git -C dup -c core.commitGraph=false commit-graph write --split=no-merge --reachable 2>err &&
test_i18ngrep "attempting to write a commit-graph" err &&
commit-graph: ignore duplicates when merging layers Thomas reported [1] that a "git fetch" command was failing with an error saying "unexpected duplicate commit id". The root cause is that they had fetch.writeCommitGraph enabled which generates commit-graph chains, and this instance was merging two layers that both contained the same commit ID. [1] https://lore.kernel.org/git/55f8f00c-a61c-67d4-889e-a9501c596c39@virtuell-zuhause.de/ The initial assumption is that Git would not write a commit ID into a commit-graph layer if it already exists in a lower commit-graph layer. Somehow, this specific case did get into that situation, leading to this error. While unexpected, this isn't actually invalid (as long as the two layers agree on the metadata for the commit). When we parse a commit that does not have a graph_pos in the commit_graph_data_slab, we use binary search in the commit-graph layers to find the commit and set graph_pos. That position is never used again in this case. However, when we parse a commit from the commit-graph file, we load its parents from the commit-graph and assign graph_pos at that point. If those parents were already parsed from the commit-graph, then nothing needs to be done. Otherwise, this graph_pos is a valid position in the commit-graph so we can parse the parents, when necessary. Thus, this die() is too aggressive. The easiest thing to do would be to ignore the duplicates. If we only ignore the duplicates, then we will produce a commit-graph that has identical commit IDs listed in adjacent positions. This excess data will never be removed from the commit-graph, which could cascade into significantly bloated file sizes. Thankfully, we can collapse the list to erase the duplicate commit pointers. This allows us to get the end result we want without extra memory costs and minimal CPU time. The root cause is due to disabling core.commitGraph, which prevents parsing commits from the lower layers during a 'git commit-graph write --split' command. Since we use the 'graph_pos' value to determine whether a commit is in a lower layer, we never discover that those commits are already in the commit-graph chain and add them to the top layer. This layer is then merged down, creating duplicates. The test added in t5324-split-commit-graph.sh fails without this change. However, we still have not completely removed the need for this duplicate check. That will come in a follow-up change. Reported-by: Thomas Braun <thomas.braun@virtuell-zuhause.de> Helped-by: Taylor Blau <me@ttaylorr.com> Co-authored-by: Jeff King <peff@peff.net> Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-10-09 22:53:51 +02:00
git -C dup commit-graph write --split=no-merge --reachable &&
git -C dup commit --allow-empty -m two &&
git -C dup commit-graph write --split=no-merge --reachable &&
git -C dup commit --allow-empty -m three &&
git -C dup commit-graph write --split --reachable &&
git -C dup commit-graph verify
'
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
NUM_FIRST_LAYER_COMMITS=64
NUM_SECOND_LAYER_COMMITS=16
NUM_THIRD_LAYER_COMMITS=7
NUM_FOURTH_LAYER_COMMITS=8
NUM_FIFTH_LAYER_COMMITS=16
SECOND_LAYER_SEQUENCE_START=$(($NUM_FIRST_LAYER_COMMITS + 1))
SECOND_LAYER_SEQUENCE_END=$(($SECOND_LAYER_SEQUENCE_START + $NUM_SECOND_LAYER_COMMITS - 1))
THIRD_LAYER_SEQUENCE_START=$(($SECOND_LAYER_SEQUENCE_END + 1))
THIRD_LAYER_SEQUENCE_END=$(($THIRD_LAYER_SEQUENCE_START + $NUM_THIRD_LAYER_COMMITS - 1))
FOURTH_LAYER_SEQUENCE_START=$(($THIRD_LAYER_SEQUENCE_END + 1))
FOURTH_LAYER_SEQUENCE_END=$(($FOURTH_LAYER_SEQUENCE_START + $NUM_FOURTH_LAYER_COMMITS - 1))
FIFTH_LAYER_SEQUENCE_START=$(($FOURTH_LAYER_SEQUENCE_END + 1))
FIFTH_LAYER_SEQUENCE_END=$(($FIFTH_LAYER_SEQUENCE_START + $NUM_FIFTH_LAYER_COMMITS - 1))
# Current split graph chain:
#
# 16 commits (No GDAT)
# ------------------------
# 64 commits (GDAT)
#
test_expect_success 'setup repo for mixed generation commit-graph-chain' '
graphdir=".git/objects/info/commit-graphs" &&
test_oid_cache <<-EOF &&
oid_version sha1:1
oid_version sha256:2
EOF
git init mixed &&
(
cd mixed &&
git config core.commitGraph true &&
git config gc.writeCommitGraph false &&
for i in $(test_seq $NUM_FIRST_LAYER_COMMITS)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git -c commitGraph.generationVersion=2 commit-graph write --reachable --split &&
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
graph_read_expect $NUM_FIRST_LAYER_COMMITS &&
test_line_count = 1 $graphdir/commit-graph-chain &&
for i in $(test_seq $SECOND_LAYER_SEQUENCE_START $SECOND_LAYER_SEQUENCE_END)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git -c commitGraph.generationVersion=1 commit-graph write --reachable --split=no-merge &&
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
test_line_count = 2 $graphdir/commit-graph-chain &&
test-tool read-graph >output &&
cat >expect <<-EOF &&
header: 43475048 1 $(test_oid oid_version) 4 1
num_commits: $NUM_SECOND_LAYER_COMMITS
chunks: oid_fanout oid_lookup commit_metadata
options:
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
EOF
test_cmp expect output &&
git commit-graph verify &&
cat $graphdir/commit-graph-chain
)
'
# The new layer will be added without generation data chunk as it was not
# present on the layer underneath it.
#
# 7 commits (No GDAT)
# ------------------------
# 16 commits (No GDAT)
# ------------------------
# 64 commits (GDAT)
#
test_expect_success 'do not write generation data chunk if not present on existing tip' '
git clone mixed mixed-no-gdat &&
(
cd mixed-no-gdat &&
for i in $(test_seq $THIRD_LAYER_SEQUENCE_START $THIRD_LAYER_SEQUENCE_END)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git commit-graph write --reachable --split=no-merge &&
test_line_count = 3 $graphdir/commit-graph-chain &&
test-tool read-graph >output &&
cat >expect <<-EOF &&
header: 43475048 1 $(test_oid oid_version) 4 2
num_commits: $NUM_THIRD_LAYER_COMMITS
chunks: oid_fanout oid_lookup commit_metadata
options:
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
EOF
test_cmp expect output &&
git commit-graph verify
)
'
# Number of commits in each layer of the split-commit graph before merge:
#
# 8 commits (No GDAT)
# ------------------------
# 7 commits (No GDAT)
# ------------------------
# 16 commits (No GDAT)
# ------------------------
# 64 commits (GDAT)
#
# The top two layers are merged and do not have generation data chunk as layer below them does
# not have generation data chunk.
#
# 15 commits (No GDAT)
# ------------------------
# 16 commits (No GDAT)
# ------------------------
# 64 commits (GDAT)
#
test_expect_success 'do not write generation data chunk if the topmost remaining layer does not have generation data chunk' '
git clone mixed-no-gdat mixed-merge-no-gdat &&
(
cd mixed-merge-no-gdat &&
for i in $(test_seq $FOURTH_LAYER_SEQUENCE_START $FOURTH_LAYER_SEQUENCE_END)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git commit-graph write --reachable --split --size-multiple 1 &&
test_line_count = 3 $graphdir/commit-graph-chain &&
test-tool read-graph >output &&
cat >expect <<-EOF &&
header: 43475048 1 $(test_oid oid_version) 4 2
num_commits: $(($NUM_THIRD_LAYER_COMMITS + $NUM_FOURTH_LAYER_COMMITS))
chunks: oid_fanout oid_lookup commit_metadata
options:
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
EOF
test_cmp expect output &&
git commit-graph verify
)
'
# Number of commits in each layer of the split-commit graph before merge:
#
# 16 commits (No GDAT)
# ------------------------
# 15 commits (No GDAT)
# ------------------------
# 16 commits (No GDAT)
# ------------------------
# 64 commits (GDAT)
#
# The top three layers are merged and has generation data chunk as the topmost remaining layer
# has generation data chunk.
#
# 47 commits (GDAT)
# ------------------------
# 64 commits (GDAT)
#
test_expect_success 'write generation data chunk if topmost remaining layer has generation data chunk' '
git clone mixed-merge-no-gdat mixed-merge-gdat &&
(
cd mixed-merge-gdat &&
for i in $(test_seq $FIFTH_LAYER_SEQUENCE_START $FIFTH_LAYER_SEQUENCE_END)
do
test_commit $i &&
git branch commits/$i || return 1
done &&
git commit-graph write --reachable --split --size-multiple 1 &&
test_line_count = 2 $graphdir/commit-graph-chain &&
test-tool read-graph >output &&
cat >expect <<-EOF &&
header: 43475048 1 $(test_oid oid_version) 5 1
num_commits: $(($NUM_SECOND_LAYER_COMMITS + $NUM_THIRD_LAYER_COMMITS + $NUM_FOURTH_LAYER_COMMITS + $NUM_FIFTH_LAYER_COMMITS))
chunks: oid_fanout oid_lookup commit_metadata generation_data
options:
commit-graph: use generation v2 only if entire chain does Since there are released versions of Git that understand generation numbers in the commit-graph's CDAT chunk but do not understand the GDAT chunk, the following scenario is possible: 1. "New" Git writes a commit-graph with the GDAT chunk. 2. "Old" Git writes a split commit-graph on top without a GDAT chunk. If each layer of split commit-graph is treated independently, as it was the case before this commit, with Git inspecting only the current layer for chunk_generation_data pointer, commits in the lower layer (one with GDAT) whould have corrected commit date as their generation number, while commits in the upper layer would have topological levels as their generation. Corrected commit dates usually have much larger values than topological levels. This means that if we take two commits, one from the upper layer, and one reachable from it in the lower layer, then the expectation that the generation of a parent is smaller than the generation of a child would be violated. It is difficult to expose this issue in a test. Since we _start_ with artificially low generation numbers, any commit walk that prioritizes generation numbers will walk all of the commits with high generation number before walking the commits with low generation number. In all the cases I tried, the commit-graph layers themselves "protect" any incorrect behavior since none of the commits in the lower layer can reach the commits in the upper layer. This issue would manifest itself as a performance problem in this case, especially with something like "git log --graph" since the low generation numbers would cause the in-degree queue to walk all of the commits in the lower layer before allowing the topo-order queue to write anything to output (depending on the size of the upper layer). Therefore, When writing the new layer in split commit-graph, we write a GDAT chunk only if the topmost layer has a GDAT chunk. This guarantees that if a layer has GDAT chunk, all lower layers must have a GDAT chunk as well. Rewriting layers follows similar approach: if the topmost layer below the set of layers being rewritten (in the split commit-graph chain) exists, and it does not contain GDAT chunk, then the result of rewrite does not have GDAT chunks either. Signed-off-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Abhishek Kumar <abhishekkumar8222@gmail.com> Reviewed-by: Taylor Blau <me@ttaylorr.com> Reviewed-by: Derrick Stolee <dstolee@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-16 19:11:16 +01:00
EOF
test_cmp expect output
)
'
test_expect_success 'write generation data chunk when commit-graph chain is replaced' '
git clone mixed mixed-replace &&
(
cd mixed-replace &&
git commit-graph write --reachable --split=replace &&
test_path_is_file $graphdir/commit-graph-chain &&
test_line_count = 1 $graphdir/commit-graph-chain &&
verify_chain_files_exist $graphdir &&
graph_read_expect $(($NUM_FIRST_LAYER_COMMITS + $NUM_SECOND_LAYER_COMMITS)) &&
git commit-graph verify
)
'
test_done