git-commit-vandalism/refs.c

1575 lines
38 KiB
C
Raw Normal View History

/*
* The backend-independent part of the reference module.
*/
#include "cache.h"
#include "lockfile.h"
#include "refs.h"
#include "refs/refs-internal.h"
#include "object.h"
#include "tag.h"
/*
* List of all available backends
*/
static struct ref_storage_be *refs_backends = &refs_be_files;
static struct ref_storage_be *find_ref_storage_backend(const char *name)
{
struct ref_storage_be *be;
for (be = refs_backends; be; be = be->next)
if (!strcmp(be->name, name))
return be;
return NULL;
}
int ref_storage_backend_exists(const char *name)
{
return find_ref_storage_backend(name) != NULL;
}
/*
* How to handle various characters in refnames:
* 0: An acceptable character for refs
* 1: End-of-component
* 2: ., look for a preceding . to reject .. in refs
* 3: {, look for a preceding @ to reject @{ in refs
* 4: A bad character: ASCII control characters, and
* ":", "?", "[", "\", "^", "~", SP, or TAB
* 5: *, reject unless REFNAME_REFSPEC_PATTERN is set
*/
static unsigned char refname_disposition[256] = {
1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 2, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 4,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 4, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 4
};
/*
* Try to read one refname component from the front of refname.
* Return the length of the component found, or -1 if the component is
* not legal. It is legal if it is something reasonable to have under
* ".git/refs/"; We do not like it if:
*
* - any path component of it begins with ".", or
* - it has double dots "..", or
* - it has ASCII control characters, or
* - it has ":", "?", "[", "\", "^", "~", SP, or TAB anywhere, or
* - it has "*" anywhere unless REFNAME_REFSPEC_PATTERN is set, or
* - it ends with a "/", or
* - it ends with ".lock", or
* - it contains a "@{" portion
*/
static int check_refname_component(const char *refname, int *flags)
{
const char *cp;
char last = '\0';
for (cp = refname; ; cp++) {
int ch = *cp & 255;
unsigned char disp = refname_disposition[ch];
switch (disp) {
case 1:
goto out;
case 2:
if (last == '.')
return -1; /* Refname contains "..". */
break;
case 3:
if (last == '@')
return -1; /* Refname contains "@{". */
break;
case 4:
return -1;
case 5:
if (!(*flags & REFNAME_REFSPEC_PATTERN))
return -1; /* refspec can't be a pattern */
/*
* Unset the pattern flag so that we only accept
* a single asterisk for one side of refspec.
*/
*flags &= ~ REFNAME_REFSPEC_PATTERN;
break;
}
last = ch;
}
out:
if (cp == refname)
return 0; /* Component has zero length. */
if (refname[0] == '.')
return -1; /* Component starts with '.'. */
if (cp - refname >= LOCK_SUFFIX_LEN &&
!memcmp(cp - LOCK_SUFFIX_LEN, LOCK_SUFFIX, LOCK_SUFFIX_LEN))
return -1; /* Refname ends with ".lock". */
return cp - refname;
}
int check_refname_format(const char *refname, int flags)
{
int component_len, component_count = 0;
if (!strcmp(refname, "@"))
/* Refname is a single character '@'. */
return -1;
while (1) {
/* We are at the start of a path component. */
component_len = check_refname_component(refname, &flags);
if (component_len <= 0)
return -1;
component_count++;
if (refname[component_len] == '\0')
break;
/* Skip to next component. */
refname += component_len + 1;
}
if (refname[component_len - 1] == '.')
return -1; /* Refname ends with '.'. */
if (!(flags & REFNAME_ALLOW_ONELEVEL) && component_count < 2)
return -1; /* Refname has only one component. */
return 0;
}
int refname_is_safe(const char *refname)
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
{
const char *rest;
if (skip_prefix(refname, "refs/", &rest)) {
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
char *buf;
int result;
size_t restlen = strlen(rest);
/* rest must not be empty, or start or end with "/" */
if (!restlen || *rest == '/' || rest[restlen - 1] == '/')
return 0;
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
/*
* Does the refname try to escape refs/?
* For example: refs/foo/../bar is safe but refs/foo/../../bar
* is not.
*/
buf = xmallocz(restlen);
result = !normalize_path_copy(buf, rest) && !strcmp(buf, rest);
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
free(buf);
return result;
}
do {
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
if (!isupper(*refname) && *refname != '_')
return 0;
refname++;
} while (*refname);
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
return 1;
}
char *resolve_refdup(const char *refname, int resolve_flags,
unsigned char *sha1, int *flags)
{
return xstrdup_or_null(resolve_ref_unsafe(refname, resolve_flags,
sha1, flags));
}
/* The argument to filter_refs */
struct ref_filter {
const char *pattern;
each_ref_fn *fn;
void *cb_data;
};
int read_ref_full(const char *refname, int resolve_flags, unsigned char *sha1, int *flags)
{
if (resolve_ref_unsafe(refname, resolve_flags, sha1, flags))
return 0;
return -1;
}
int read_ref(const char *refname, unsigned char *sha1)
{
return read_ref_full(refname, RESOLVE_REF_READING, sha1, NULL);
}
int ref_exists(const char *refname)
{
unsigned char sha1[20];
return !!resolve_ref_unsafe(refname, RESOLVE_REF_READING, sha1, NULL);
}
static int filter_refs(const char *refname, const struct object_id *oid,
int flags, void *data)
{
struct ref_filter *filter = (struct ref_filter *)data;
if (wildmatch(filter->pattern, refname, 0, NULL))
return 0;
return filter->fn(refname, oid, flags, filter->cb_data);
}
enum peel_status peel_object(const unsigned char *name, unsigned char *sha1)
{
struct object *o = lookup_unknown_object(name);
if (o->type == OBJ_NONE) {
int type = sha1_object_info(name, NULL);
if (type < 0 || !object_as_type(o, type, 0))
return PEEL_INVALID;
}
if (o->type != OBJ_TAG)
return PEEL_NON_TAG;
o = deref_tag_noverify(o);
if (!o)
return PEEL_INVALID;
hashcpy(sha1, o->oid.hash);
return PEEL_PEELED;
}
struct warn_if_dangling_data {
FILE *fp;
const char *refname;
const struct string_list *refnames;
const char *msg_fmt;
};
static int warn_if_dangling_symref(const char *refname, const struct object_id *oid,
int flags, void *cb_data)
{
struct warn_if_dangling_data *d = cb_data;
const char *resolves_to;
struct object_id junk;
if (!(flags & REF_ISSYMREF))
return 0;
resolves_to = resolve_ref_unsafe(refname, 0, junk.hash, NULL);
if (!resolves_to
|| (d->refname
? strcmp(resolves_to, d->refname)
: !string_list_has_string(d->refnames, resolves_to))) {
return 0;
}
fprintf(d->fp, d->msg_fmt, refname);
fputc('\n', d->fp);
return 0;
}
void warn_dangling_symref(FILE *fp, const char *msg_fmt, const char *refname)
{
struct warn_if_dangling_data data;
data.fp = fp;
data.refname = refname;
data.refnames = NULL;
data.msg_fmt = msg_fmt;
for_each_rawref(warn_if_dangling_symref, &data);
}
void warn_dangling_symrefs(FILE *fp, const char *msg_fmt, const struct string_list *refnames)
{
struct warn_if_dangling_data data;
data.fp = fp;
data.refname = NULL;
data.refnames = refnames;
data.msg_fmt = msg_fmt;
for_each_rawref(warn_if_dangling_symref, &data);
}
int for_each_tag_ref(each_ref_fn fn, void *cb_data)
{
return for_each_ref_in("refs/tags/", fn, cb_data);
}
int for_each_tag_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
{
return for_each_ref_in_submodule(submodule, "refs/tags/", fn, cb_data);
}
int for_each_branch_ref(each_ref_fn fn, void *cb_data)
{
return for_each_ref_in("refs/heads/", fn, cb_data);
}
int for_each_branch_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
{
return for_each_ref_in_submodule(submodule, "refs/heads/", fn, cb_data);
}
int for_each_remote_ref(each_ref_fn fn, void *cb_data)
{
return for_each_ref_in("refs/remotes/", fn, cb_data);
}
int for_each_remote_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
{
return for_each_ref_in_submodule(submodule, "refs/remotes/", fn, cb_data);
}
int head_ref_namespaced(each_ref_fn fn, void *cb_data)
{
struct strbuf buf = STRBUF_INIT;
int ret = 0;
struct object_id oid;
int flag;
strbuf_addf(&buf, "%sHEAD", get_git_namespace());
if (!read_ref_full(buf.buf, RESOLVE_REF_READING, oid.hash, &flag))
ret = fn(buf.buf, &oid, flag, cb_data);
strbuf_release(&buf);
return ret;
}
int for_each_glob_ref_in(each_ref_fn fn, const char *pattern,
const char *prefix, void *cb_data)
{
struct strbuf real_pattern = STRBUF_INIT;
struct ref_filter filter;
int ret;
if (!prefix && !starts_with(pattern, "refs/"))
strbuf_addstr(&real_pattern, "refs/");
else if (prefix)
strbuf_addstr(&real_pattern, prefix);
strbuf_addstr(&real_pattern, pattern);
if (!has_glob_specials(pattern)) {
/* Append implied '/' '*' if not present. */
2015-09-24 23:08:35 +02:00
strbuf_complete(&real_pattern, '/');
/* No need to check for '*', there is none. */
strbuf_addch(&real_pattern, '*');
}
filter.pattern = real_pattern.buf;
filter.fn = fn;
filter.cb_data = cb_data;
ret = for_each_ref(filter_refs, &filter);
strbuf_release(&real_pattern);
return ret;
}
int for_each_glob_ref(each_ref_fn fn, const char *pattern, void *cb_data)
{
return for_each_glob_ref_in(fn, pattern, NULL, cb_data);
}
const char *prettify_refname(const char *name)
{
return name + (
starts_with(name, "refs/heads/") ? 11 :
starts_with(name, "refs/tags/") ? 10 :
starts_with(name, "refs/remotes/") ? 13 :
0);
}
static const char *ref_rev_parse_rules[] = {
2007-11-11 15:01:46 +01:00
"%.*s",
"refs/%.*s",
"refs/tags/%.*s",
"refs/heads/%.*s",
"refs/remotes/%.*s",
"refs/remotes/%.*s/HEAD",
NULL
};
int refname_match(const char *abbrev_name, const char *full_name)
2007-11-11 15:01:46 +01:00
{
const char **p;
const int abbrev_name_len = strlen(abbrev_name);
for (p = ref_rev_parse_rules; *p; p++) {
2007-11-11 15:01:46 +01:00
if (!strcmp(full_name, mkpath(*p, abbrev_name_len, abbrev_name))) {
return 1;
}
}
return 0;
}
/*
* *string and *len will only be substituted, and *string returned (for
* later free()ing) if the string passed in is a magic short-hand form
* to name a branch.
*/
static char *substitute_branch_name(const char **string, int *len)
{
struct strbuf buf = STRBUF_INIT;
int ret = interpret_branch_name(*string, *len, &buf);
if (ret == *len) {
size_t size;
*string = strbuf_detach(&buf, &size);
*len = size;
return (char *)*string;
}
return NULL;
}
int dwim_ref(const char *str, int len, unsigned char *sha1, char **ref)
{
char *last_branch = substitute_branch_name(&str, &len);
int refs_found = expand_ref(str, len, sha1, ref);
free(last_branch);
return refs_found;
}
int expand_ref(const char *str, int len, unsigned char *sha1, char **ref)
{
const char **p, *r;
int refs_found = 0;
*ref = NULL;
for (p = ref_rev_parse_rules; *p; p++) {
char fullref[PATH_MAX];
unsigned char sha1_from_ref[20];
unsigned char *this_result;
int flag;
this_result = refs_found ? sha1_from_ref : sha1;
mksnpath(fullref, sizeof(fullref), *p, len, str);
r = resolve_ref_unsafe(fullref, RESOLVE_REF_READING,
this_result, &flag);
if (r) {
if (!refs_found++)
*ref = xstrdup(r);
if (!warn_ambiguous_refs)
break;
} else if ((flag & REF_ISSYMREF) && strcmp(fullref, "HEAD")) {
warning("ignoring dangling symref %s.", fullref);
} else if ((flag & REF_ISBROKEN) && strchr(fullref, '/')) {
warning("ignoring broken ref %s.", fullref);
}
}
return refs_found;
}
int dwim_log(const char *str, int len, unsigned char *sha1, char **log)
{
char *last_branch = substitute_branch_name(&str, &len);
const char **p;
int logs_found = 0;
*log = NULL;
for (p = ref_rev_parse_rules; *p; p++) {
unsigned char hash[20];
char path[PATH_MAX];
const char *ref, *it;
mksnpath(path, sizeof(path), *p, len, str);
ref = resolve_ref_unsafe(path, RESOLVE_REF_READING,
hash, NULL);
if (!ref)
continue;
if (reflog_exists(path))
it = path;
else if (strcmp(ref, path) && reflog_exists(ref))
it = ref;
else
continue;
if (!logs_found++) {
*log = xstrdup(it);
hashcpy(sha1, hash);
}
if (!warn_ambiguous_refs)
break;
}
free(last_branch);
return logs_found;
}
static int is_per_worktree_ref(const char *refname)
{
return !strcmp(refname, "HEAD") ||
starts_with(refname, "refs/bisect/");
}
static int is_pseudoref_syntax(const char *refname)
{
const char *c;
for (c = refname; *c; c++) {
if (!isupper(*c) && *c != '-' && *c != '_')
return 0;
}
return 1;
}
enum ref_type ref_type(const char *refname)
{
if (is_per_worktree_ref(refname))
return REF_TYPE_PER_WORKTREE;
if (is_pseudoref_syntax(refname))
return REF_TYPE_PSEUDOREF;
return REF_TYPE_NORMAL;
}
static int write_pseudoref(const char *pseudoref, const unsigned char *sha1,
const unsigned char *old_sha1, struct strbuf *err)
{
const char *filename;
int fd;
static struct lock_file lock;
struct strbuf buf = STRBUF_INIT;
int ret = -1;
strbuf_addf(&buf, "%s\n", sha1_to_hex(sha1));
filename = git_path("%s", pseudoref);
fd = hold_lock_file_for_update(&lock, filename, LOCK_DIE_ON_ERROR);
if (fd < 0) {
strbuf_addf(err, "could not open '%s' for writing: %s",
filename, strerror(errno));
return -1;
}
if (old_sha1) {
unsigned char actual_old_sha1[20];
if (read_ref(pseudoref, actual_old_sha1))
die("could not read ref '%s'", pseudoref);
if (hashcmp(actual_old_sha1, old_sha1)) {
strbuf_addf(err, "unexpected sha1 when writing '%s'", pseudoref);
rollback_lock_file(&lock);
goto done;
}
}
if (write_in_full(fd, buf.buf, buf.len) != buf.len) {
strbuf_addf(err, "could not write to '%s'", filename);
rollback_lock_file(&lock);
goto done;
}
commit_lock_file(&lock);
ret = 0;
done:
strbuf_release(&buf);
return ret;
}
static int delete_pseudoref(const char *pseudoref, const unsigned char *old_sha1)
{
static struct lock_file lock;
const char *filename;
filename = git_path("%s", pseudoref);
if (old_sha1 && !is_null_sha1(old_sha1)) {
int fd;
unsigned char actual_old_sha1[20];
fd = hold_lock_file_for_update(&lock, filename,
LOCK_DIE_ON_ERROR);
if (fd < 0)
die_errno(_("Could not open '%s' for writing"), filename);
if (read_ref(pseudoref, actual_old_sha1))
die("could not read ref '%s'", pseudoref);
if (hashcmp(actual_old_sha1, old_sha1)) {
warning("Unexpected sha1 when deleting %s", pseudoref);
rollback_lock_file(&lock);
return -1;
}
unlink(filename);
rollback_lock_file(&lock);
} else {
unlink(filename);
}
return 0;
}
int delete_ref(const char *msg, const char *refname,
const unsigned char *old_sha1, unsigned int flags)
{
struct ref_transaction *transaction;
struct strbuf err = STRBUF_INIT;
if (ref_type(refname) == REF_TYPE_PSEUDOREF)
return delete_pseudoref(refname, old_sha1);
transaction = ref_transaction_begin(&err);
if (!transaction ||
ref_transaction_delete(transaction, refname, old_sha1,
flags, msg, &err) ||
ref_transaction_commit(transaction, &err)) {
error("%s", err.buf);
ref_transaction_free(transaction);
strbuf_release(&err);
return 1;
}
ref_transaction_free(transaction);
strbuf_release(&err);
return 0;
}
int copy_reflog_msg(char *buf, const char *msg)
{
char *cp = buf;
char c;
int wasspace = 1;
*cp++ = '\t';
while ((c = *msg++)) {
if (wasspace && isspace(c))
continue;
wasspace = isspace(c);
if (wasspace)
c = ' ';
*cp++ = c;
}
while (buf < cp && isspace(cp[-1]))
cp--;
*cp++ = '\n';
return cp - buf;
}
int should_autocreate_reflog(const char *refname)
{
switch (log_all_ref_updates) {
case LOG_REFS_ALWAYS:
return 1;
case LOG_REFS_NORMAL:
return starts_with(refname, "refs/heads/") ||
starts_with(refname, "refs/remotes/") ||
starts_with(refname, "refs/notes/") ||
!strcmp(refname, "HEAD");
default:
return 0;
}
}
int is_branch(const char *refname)
{
return !strcmp(refname, "HEAD") || starts_with(refname, "refs/heads/");
}
struct read_ref_at_cb {
const char *refname;
unsigned long at_time;
int cnt;
int reccnt;
unsigned char *sha1;
int found_it;
unsigned char osha1[20];
unsigned char nsha1[20];
int tz;
unsigned long date;
char **msg;
unsigned long *cutoff_time;
int *cutoff_tz;
int *cutoff_cnt;
};
static int read_ref_at_ent(unsigned char *osha1, unsigned char *nsha1,
const char *email, unsigned long timestamp, int tz,
const char *message, void *cb_data)
{
struct read_ref_at_cb *cb = cb_data;
cb->reccnt++;
cb->tz = tz;
cb->date = timestamp;
if (timestamp <= cb->at_time || cb->cnt == 0) {
if (cb->msg)
*cb->msg = xstrdup(message);
if (cb->cutoff_time)
*cb->cutoff_time = timestamp;
if (cb->cutoff_tz)
*cb->cutoff_tz = tz;
if (cb->cutoff_cnt)
*cb->cutoff_cnt = cb->reccnt - 1;
/*
* we have not yet updated cb->[n|o]sha1 so they still
* hold the values for the previous record.
*/
if (!is_null_sha1(cb->osha1)) {
hashcpy(cb->sha1, nsha1);
if (hashcmp(cb->osha1, nsha1))
warning("Log for ref %s has gap after %s.",
convert "enum date_mode" into a struct In preparation for adding date modes that may carry extra information beyond the mode itself, this patch converts the date_mode enum into a struct. Most of the conversion is fairly straightforward; we pass the struct as a pointer and dereference the type field where necessary. Locations that declare a date_mode can use a "{}" constructor. However, the tricky case is where we use the enum labels as constants, like: show_date(t, tz, DATE_NORMAL); Ideally we could say: show_date(t, tz, &{ DATE_NORMAL }); but of course C does not allow that. Likewise, we cannot cast the constant to a struct, because we need to pass an actual address. Our options are basically: 1. Manually add a "struct date_mode d = { DATE_NORMAL }" definition to each caller, and pass "&d". This makes the callers uglier, because they sometimes do not even have their own scope (e.g., they are inside a switch statement). 2. Provide a pre-made global "date_normal" struct that can be passed by address. We'd also need "date_rfc2822", "date_iso8601", and so forth. But at least the ugliness is defined in one place. 3. Provide a wrapper that generates the correct struct on the fly. The big downside is that we end up pointing to a single global, which makes our wrapper non-reentrant. But show_date is already not reentrant, so it does not matter. This patch implements 3, along with a minor macro to keep the size of the callers sane. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-06-25 18:55:02 +02:00
cb->refname, show_date(cb->date, cb->tz, DATE_MODE(RFC2822)));
}
else if (cb->date == cb->at_time)
hashcpy(cb->sha1, nsha1);
else if (hashcmp(nsha1, cb->sha1))
warning("Log for ref %s unexpectedly ended on %s.",
cb->refname, show_date(cb->date, cb->tz,
convert "enum date_mode" into a struct In preparation for adding date modes that may carry extra information beyond the mode itself, this patch converts the date_mode enum into a struct. Most of the conversion is fairly straightforward; we pass the struct as a pointer and dereference the type field where necessary. Locations that declare a date_mode can use a "{}" constructor. However, the tricky case is where we use the enum labels as constants, like: show_date(t, tz, DATE_NORMAL); Ideally we could say: show_date(t, tz, &{ DATE_NORMAL }); but of course C does not allow that. Likewise, we cannot cast the constant to a struct, because we need to pass an actual address. Our options are basically: 1. Manually add a "struct date_mode d = { DATE_NORMAL }" definition to each caller, and pass "&d". This makes the callers uglier, because they sometimes do not even have their own scope (e.g., they are inside a switch statement). 2. Provide a pre-made global "date_normal" struct that can be passed by address. We'd also need "date_rfc2822", "date_iso8601", and so forth. But at least the ugliness is defined in one place. 3. Provide a wrapper that generates the correct struct on the fly. The big downside is that we end up pointing to a single global, which makes our wrapper non-reentrant. But show_date is already not reentrant, so it does not matter. This patch implements 3, along with a minor macro to keep the size of the callers sane. Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-06-25 18:55:02 +02:00
DATE_MODE(RFC2822)));
hashcpy(cb->osha1, osha1);
hashcpy(cb->nsha1, nsha1);
cb->found_it = 1;
return 1;
}
hashcpy(cb->osha1, osha1);
hashcpy(cb->nsha1, nsha1);
if (cb->cnt > 0)
cb->cnt--;
return 0;
}
static int read_ref_at_ent_oldest(unsigned char *osha1, unsigned char *nsha1,
const char *email, unsigned long timestamp,
int tz, const char *message, void *cb_data)
{
struct read_ref_at_cb *cb = cb_data;
if (cb->msg)
*cb->msg = xstrdup(message);
if (cb->cutoff_time)
*cb->cutoff_time = timestamp;
if (cb->cutoff_tz)
*cb->cutoff_tz = tz;
if (cb->cutoff_cnt)
*cb->cutoff_cnt = cb->reccnt;
hashcpy(cb->sha1, osha1);
if (is_null_sha1(cb->sha1))
hashcpy(cb->sha1, nsha1);
/* We just want the first entry */
return 1;
}
int read_ref_at(const char *refname, unsigned int flags, unsigned long at_time, int cnt,
unsigned char *sha1, char **msg,
unsigned long *cutoff_time, int *cutoff_tz, int *cutoff_cnt)
{
struct read_ref_at_cb cb;
memset(&cb, 0, sizeof(cb));
cb.refname = refname;
cb.at_time = at_time;
cb.cnt = cnt;
cb.msg = msg;
cb.cutoff_time = cutoff_time;
cb.cutoff_tz = cutoff_tz;
cb.cutoff_cnt = cutoff_cnt;
cb.sha1 = sha1;
for_each_reflog_ent_reverse(refname, read_ref_at_ent, &cb);
if (!cb.reccnt) {
if (flags & GET_SHA1_QUIETLY)
exit(128);
else
die("Log for %s is empty.", refname);
}
if (cb.found_it)
return 0;
for_each_reflog_ent(refname, read_ref_at_ent_oldest, &cb);
return 1;
}
struct ref_transaction *ref_transaction_begin(struct strbuf *err)
{
assert(err);
return xcalloc(1, sizeof(struct ref_transaction));
}
void ref_transaction_free(struct ref_transaction *transaction)
{
int i;
if (!transaction)
return;
for (i = 0; i < transaction->nr; i++) {
free(transaction->updates[i]->msg);
free(transaction->updates[i]);
}
free(transaction->updates);
free(transaction);
}
struct ref_update *ref_transaction_add_update(
struct ref_transaction *transaction,
const char *refname, unsigned int flags,
const unsigned char *new_sha1,
const unsigned char *old_sha1,
const char *msg)
{
struct ref_update *update;
if (transaction->state != REF_TRANSACTION_OPEN)
die("BUG: update called for transaction that is not open");
if ((flags & REF_ISPRUNING) && !(flags & REF_NODEREF))
die("BUG: REF_ISPRUNING set without REF_NODEREF");
FLEX_ALLOC_STR(update, refname, refname);
ALLOC_GROW(transaction->updates, transaction->nr + 1, transaction->alloc);
transaction->updates[transaction->nr++] = update;
update->flags = flags;
if (flags & REF_HAVE_NEW)
hashcpy(update->new_sha1, new_sha1);
if (flags & REF_HAVE_OLD)
hashcpy(update->old_sha1, old_sha1);
update->msg = xstrdup_or_null(msg);
return update;
}
int ref_transaction_update(struct ref_transaction *transaction,
const char *refname,
const unsigned char *new_sha1,
const unsigned char *old_sha1,
unsigned int flags, const char *msg,
struct strbuf *err)
{
assert(err);
if ((new_sha1 && !is_null_sha1(new_sha1)) ?
check_refname_format(refname, REFNAME_ALLOW_ONELEVEL) :
!refname_is_safe(refname)) {
strbuf_addf(err, "refusing to update ref with bad name '%s'",
refs.c: allow listing and deleting badly named refs We currently do not handle badly named refs well: $ cp .git/refs/heads/master .git/refs/heads/master.....@\*@\\. $ git branch fatal: Reference has invalid format: 'refs/heads/master.....@*@\.' $ git branch -D master.....@\*@\\. error: branch 'master.....@*@\.' not found. Users cannot recover from a badly named ref without manually finding and deleting the loose ref file or appropriate line in packed-refs. Making that easier will make it easier to tweak the ref naming rules in the future, for example to forbid shell metacharacters like '`' and '"', without putting people in a state that is hard to get out of. So allow "branch --list" to show these refs and allow "branch -d/-D" and "update-ref -d" to delete them. Other commands (for example to rename refs) will continue to not handle these refs but can be changed in later patches. Details: In resolving functions, refuse to resolve refs that don't pass the git-check-ref-format(1) check unless the new RESOLVE_REF_ALLOW_BAD_NAME flag is passed. Even with RESOLVE_REF_ALLOW_BAD_NAME, refuse to resolve refs that escape the refs/ directory and do not match the pattern [A-Z_]* (think "HEAD" and "MERGE_HEAD"). In locking functions, refuse to act on badly named refs unless they are being deleted and either are in the refs/ directory or match [A-Z_]*. Just like other invalid refs, flag resolved, badly named refs with the REF_ISBROKEN flag, treat them as resolving to null_sha1, and skip them in all iteration functions except for for_each_rawref. Flag badly named refs (but not symrefs pointing to badly named refs) with a REF_BAD_NAME flag to make it easier for future callers to notice and handle them specially. For example, in a later patch for-each-ref will use this flag to detect refs whose names can confuse callers parsing for-each-ref output. In the transaction API, refuse to create or update badly named refs, but allow deleting them (unless they try to escape refs/ and don't match [A-Z_]*). Signed-off-by: Ronnie Sahlberg <sahlberg@google.com> Signed-off-by: Jonathan Nieder <jrnieder@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-09-03 20:45:43 +02:00
refname);
return -1;
}
flags |= (new_sha1 ? REF_HAVE_NEW : 0) | (old_sha1 ? REF_HAVE_OLD : 0);
ref_transaction_add_update(transaction, refname, flags,
new_sha1, old_sha1, msg);
return 0;
}
int ref_transaction_create(struct ref_transaction *transaction,
const char *refname,
const unsigned char *new_sha1,
unsigned int flags, const char *msg,
struct strbuf *err)
{
if (!new_sha1 || is_null_sha1(new_sha1))
die("BUG: create called without valid new_sha1");
return ref_transaction_update(transaction, refname, new_sha1,
null_sha1, flags, msg, err);
}
int ref_transaction_delete(struct ref_transaction *transaction,
const char *refname,
const unsigned char *old_sha1,
unsigned int flags, const char *msg,
struct strbuf *err)
{
if (old_sha1 && is_null_sha1(old_sha1))
die("BUG: delete called with old_sha1 set to zeros");
return ref_transaction_update(transaction, refname,
null_sha1, old_sha1,
flags, msg, err);
}
int ref_transaction_verify(struct ref_transaction *transaction,
const char *refname,
const unsigned char *old_sha1,
unsigned int flags,
struct strbuf *err)
{
if (!old_sha1)
die("BUG: verify called with old_sha1 set to NULL");
return ref_transaction_update(transaction, refname,
NULL, old_sha1,
flags, NULL, err);
}
int update_ref_oid(const char *msg, const char *refname,
const struct object_id *new_oid, const struct object_id *old_oid,
unsigned int flags, enum action_on_err onerr)
{
return update_ref(msg, refname, new_oid ? new_oid->hash : NULL,
old_oid ? old_oid->hash : NULL, flags, onerr);
}
int update_ref(const char *msg, const char *refname,
const unsigned char *new_sha1, const unsigned char *old_sha1,
unsigned int flags, enum action_on_err onerr)
{
struct ref_transaction *t = NULL;
struct strbuf err = STRBUF_INIT;
int ret = 0;
if (ref_type(refname) == REF_TYPE_PSEUDOREF) {
ret = write_pseudoref(refname, new_sha1, old_sha1, &err);
} else {
t = ref_transaction_begin(&err);
if (!t ||
ref_transaction_update(t, refname, new_sha1, old_sha1,
flags, msg, &err) ||
ref_transaction_commit(t, &err)) {
ret = 1;
ref_transaction_free(t);
}
}
if (ret) {
const char *str = "update_ref failed for ref '%s': %s";
switch (onerr) {
case UPDATE_REFS_MSG_ON_ERR:
error(str, refname, err.buf);
break;
case UPDATE_REFS_DIE_ON_ERR:
die(str, refname, err.buf);
break;
case UPDATE_REFS_QUIET_ON_ERR:
break;
}
strbuf_release(&err);
return 1;
}
strbuf_release(&err);
if (t)
ref_transaction_free(t);
return 0;
}
char *shorten_unambiguous_ref(const char *refname, int strict)
{
int i;
static char **scanf_fmts;
static int nr_rules;
char *short_name;
if (!nr_rules) {
/*
* Pre-generate scanf formats from ref_rev_parse_rules[].
* Generate a format suitable for scanf from a
* ref_rev_parse_rules rule by interpolating "%s" at the
* location of the "%.*s".
*/
size_t total_len = 0;
size_t offset = 0;
/* the rule list is NULL terminated, count them first */
for (nr_rules = 0; ref_rev_parse_rules[nr_rules]; nr_rules++)
/* -2 for strlen("%.*s") - strlen("%s"); +1 for NUL */
total_len += strlen(ref_rev_parse_rules[nr_rules]) - 2 + 1;
scanf_fmts = xmalloc(st_add(st_mult(sizeof(char *), nr_rules), total_len));
offset = 0;
for (i = 0; i < nr_rules; i++) {
assert(offset < total_len);
scanf_fmts[i] = (char *)&scanf_fmts[nr_rules] + offset;
offset += snprintf(scanf_fmts[i], total_len - offset,
ref_rev_parse_rules[i], 2, "%s") + 1;
}
}
/* bail out if there are no rules */
if (!nr_rules)
return xstrdup(refname);
/* buffer for scanf result, at most refname must fit */
short_name = xstrdup(refname);
/* skip first rule, it will always match */
for (i = nr_rules - 1; i > 0 ; --i) {
int j;
int rules_to_fail = i;
int short_name_len;
if (1 != sscanf(refname, scanf_fmts[i], short_name))
continue;
short_name_len = strlen(short_name);
/*
* in strict mode, all (except the matched one) rules
* must fail to resolve to a valid non-ambiguous ref
*/
if (strict)
rules_to_fail = nr_rules;
/*
* check if the short name resolves to a valid ref,
* but use only rules prior to the matched one
*/
for (j = 0; j < rules_to_fail; j++) {
const char *rule = ref_rev_parse_rules[j];
char refname[PATH_MAX];
/* skip matched rule */
if (i == j)
continue;
/*
* the short name is ambiguous, if it resolves
* (with this previous rule) to a valid ref
* read_ref() returns 0 on success
*/
mksnpath(refname, sizeof(refname),
rule, short_name_len, short_name);
if (ref_exists(refname))
break;
}
/*
* short name is non-ambiguous if all previous rules
* haven't resolved to a valid ref
*/
if (j == rules_to_fail)
return short_name;
}
free(short_name);
return xstrdup(refname);
}
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
static struct string_list *hide_refs;
int parse_hide_refs_config(const char *var, const char *value, const char *section)
{
if (!strcmp("transfer.hiderefs", var) ||
/* NEEDSWORK: use parse_config_key() once both are merged */
(starts_with(var, section) && var[strlen(section)] == '.' &&
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
!strcmp(var + strlen(section), ".hiderefs"))) {
char *ref;
int len;
if (!value)
return config_error_nonbool(var);
ref = xstrdup(value);
len = strlen(ref);
while (len && ref[len - 1] == '/')
ref[--len] = '\0';
if (!hide_refs) {
hide_refs = xcalloc(1, sizeof(*hide_refs));
hide_refs->strdup_strings = 1;
}
string_list_append(hide_refs, ref);
}
return 0;
}
int ref_is_hidden(const char *refname, const char *refname_full)
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
{
refs: support negative transfer.hideRefs If you hide a hierarchy of refs using the transfer.hideRefs config, there is no way to later override that config to "unhide" it. This patch implements a "negative" hide which causes matches to immediately be marked as unhidden, even if another match would hide it. We take care to apply the matches in reverse-order from how they are fed to us by the config machinery, as that lets our usual "last one wins" config precedence work (and entries in .git/config, for example, will override /etc/gitconfig). So you can now do: $ git config --system transfer.hideRefs refs/secret $ git config transfer.hideRefs '!refs/secret/not-so-secret' to hide refs/secret in all repos, except for one public bit in one specific repo. Or you can even do: $ git clone \ -u "git -c transfer.hiderefs="!refs/foo" upload-pack" \ remote:repo.git to clone remote:repo.git, overriding any hiding it has configured. There are two alternatives that were considered and rejected: 1. A generic config mechanism for removing an item from a list. E.g.: (e.g., "[transfer] hideRefs -= refs/foo"). This is nice because it could apply to other multi-valued config, as well. But it is not nearly as flexible. There is no way to say: [transfer] hideRefs = refs/secret hideRefs = refs/secret/not-so-secret Having explicit negative specifications means we can override previous entries, even if they are not the same literal string. 2. Adding another variable to override some parts of hideRefs (e.g., "exposeRefs"). This solves the problem from alternative (1), but it cannot easily obey the normal config precedence, because it would use two separate lists. For example: [transfer] hideRefs = refs/secret exposeRefs = refs/secret/not-so-secret hideRefs = refs/secret/not-so-secret/no-really-its-secret With two lists, we have to apply the "expose" rules first, and only then apply the "hide" rules. But that does not match what the above config intends. Of course we could internally parse that to a single list, respecting the ordering, which saves us having to invent the new "!" syntax. But using a single name communicates to the user that the ordering _is_ important. And "!" is well-known for negation, and should not appear at the beginning of a ref (it is actually valid in a ref-name, but all entries here should be fully-qualified, starting with "refs/"). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-07-28 22:23:26 +02:00
int i;
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
if (!hide_refs)
return 0;
refs: support negative transfer.hideRefs If you hide a hierarchy of refs using the transfer.hideRefs config, there is no way to later override that config to "unhide" it. This patch implements a "negative" hide which causes matches to immediately be marked as unhidden, even if another match would hide it. We take care to apply the matches in reverse-order from how they are fed to us by the config machinery, as that lets our usual "last one wins" config precedence work (and entries in .git/config, for example, will override /etc/gitconfig). So you can now do: $ git config --system transfer.hideRefs refs/secret $ git config transfer.hideRefs '!refs/secret/not-so-secret' to hide refs/secret in all repos, except for one public bit in one specific repo. Or you can even do: $ git clone \ -u "git -c transfer.hiderefs="!refs/foo" upload-pack" \ remote:repo.git to clone remote:repo.git, overriding any hiding it has configured. There are two alternatives that were considered and rejected: 1. A generic config mechanism for removing an item from a list. E.g.: (e.g., "[transfer] hideRefs -= refs/foo"). This is nice because it could apply to other multi-valued config, as well. But it is not nearly as flexible. There is no way to say: [transfer] hideRefs = refs/secret hideRefs = refs/secret/not-so-secret Having explicit negative specifications means we can override previous entries, even if they are not the same literal string. 2. Adding another variable to override some parts of hideRefs (e.g., "exposeRefs"). This solves the problem from alternative (1), but it cannot easily obey the normal config precedence, because it would use two separate lists. For example: [transfer] hideRefs = refs/secret exposeRefs = refs/secret/not-so-secret hideRefs = refs/secret/not-so-secret/no-really-its-secret With two lists, we have to apply the "expose" rules first, and only then apply the "hide" rules. But that does not match what the above config intends. Of course we could internally parse that to a single list, respecting the ordering, which saves us having to invent the new "!" syntax. But using a single name communicates to the user that the ordering _is_ important. And "!" is well-known for negation, and should not appear at the beginning of a ref (it is actually valid in a ref-name, but all entries here should be fully-qualified, starting with "refs/"). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-07-28 22:23:26 +02:00
for (i = hide_refs->nr - 1; i >= 0; i--) {
const char *match = hide_refs->items[i].string;
const char *subject;
refs: support negative transfer.hideRefs If you hide a hierarchy of refs using the transfer.hideRefs config, there is no way to later override that config to "unhide" it. This patch implements a "negative" hide which causes matches to immediately be marked as unhidden, even if another match would hide it. We take care to apply the matches in reverse-order from how they are fed to us by the config machinery, as that lets our usual "last one wins" config precedence work (and entries in .git/config, for example, will override /etc/gitconfig). So you can now do: $ git config --system transfer.hideRefs refs/secret $ git config transfer.hideRefs '!refs/secret/not-so-secret' to hide refs/secret in all repos, except for one public bit in one specific repo. Or you can even do: $ git clone \ -u "git -c transfer.hiderefs="!refs/foo" upload-pack" \ remote:repo.git to clone remote:repo.git, overriding any hiding it has configured. There are two alternatives that were considered and rejected: 1. A generic config mechanism for removing an item from a list. E.g.: (e.g., "[transfer] hideRefs -= refs/foo"). This is nice because it could apply to other multi-valued config, as well. But it is not nearly as flexible. There is no way to say: [transfer] hideRefs = refs/secret hideRefs = refs/secret/not-so-secret Having explicit negative specifications means we can override previous entries, even if they are not the same literal string. 2. Adding another variable to override some parts of hideRefs (e.g., "exposeRefs"). This solves the problem from alternative (1), but it cannot easily obey the normal config precedence, because it would use two separate lists. For example: [transfer] hideRefs = refs/secret exposeRefs = refs/secret/not-so-secret hideRefs = refs/secret/not-so-secret/no-really-its-secret With two lists, we have to apply the "expose" rules first, and only then apply the "hide" rules. But that does not match what the above config intends. Of course we could internally parse that to a single list, respecting the ordering, which saves us having to invent the new "!" syntax. But using a single name communicates to the user that the ordering _is_ important. And "!" is well-known for negation, and should not appear at the beginning of a ref (it is actually valid in a ref-name, but all entries here should be fully-qualified, starting with "refs/"). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-07-28 22:23:26 +02:00
int neg = 0;
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
int len;
refs: support negative transfer.hideRefs If you hide a hierarchy of refs using the transfer.hideRefs config, there is no way to later override that config to "unhide" it. This patch implements a "negative" hide which causes matches to immediately be marked as unhidden, even if another match would hide it. We take care to apply the matches in reverse-order from how they are fed to us by the config machinery, as that lets our usual "last one wins" config precedence work (and entries in .git/config, for example, will override /etc/gitconfig). So you can now do: $ git config --system transfer.hideRefs refs/secret $ git config transfer.hideRefs '!refs/secret/not-so-secret' to hide refs/secret in all repos, except for one public bit in one specific repo. Or you can even do: $ git clone \ -u "git -c transfer.hiderefs="!refs/foo" upload-pack" \ remote:repo.git to clone remote:repo.git, overriding any hiding it has configured. There are two alternatives that were considered and rejected: 1. A generic config mechanism for removing an item from a list. E.g.: (e.g., "[transfer] hideRefs -= refs/foo"). This is nice because it could apply to other multi-valued config, as well. But it is not nearly as flexible. There is no way to say: [transfer] hideRefs = refs/secret hideRefs = refs/secret/not-so-secret Having explicit negative specifications means we can override previous entries, even if they are not the same literal string. 2. Adding another variable to override some parts of hideRefs (e.g., "exposeRefs"). This solves the problem from alternative (1), but it cannot easily obey the normal config precedence, because it would use two separate lists. For example: [transfer] hideRefs = refs/secret exposeRefs = refs/secret/not-so-secret hideRefs = refs/secret/not-so-secret/no-really-its-secret With two lists, we have to apply the "expose" rules first, and only then apply the "hide" rules. But that does not match what the above config intends. Of course we could internally parse that to a single list, respecting the ordering, which saves us having to invent the new "!" syntax. But using a single name communicates to the user that the ordering _is_ important. And "!" is well-known for negation, and should not appear at the beginning of a ref (it is actually valid in a ref-name, but all entries here should be fully-qualified, starting with "refs/"). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-07-28 22:23:26 +02:00
if (*match == '!') {
neg = 1;
match++;
}
if (*match == '^') {
subject = refname_full;
match++;
} else {
subject = refname;
}
/* refname can be NULL when namespaces are used. */
if (!subject || !starts_with(subject, match))
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
continue;
refs: support negative transfer.hideRefs If you hide a hierarchy of refs using the transfer.hideRefs config, there is no way to later override that config to "unhide" it. This patch implements a "negative" hide which causes matches to immediately be marked as unhidden, even if another match would hide it. We take care to apply the matches in reverse-order from how they are fed to us by the config machinery, as that lets our usual "last one wins" config precedence work (and entries in .git/config, for example, will override /etc/gitconfig). So you can now do: $ git config --system transfer.hideRefs refs/secret $ git config transfer.hideRefs '!refs/secret/not-so-secret' to hide refs/secret in all repos, except for one public bit in one specific repo. Or you can even do: $ git clone \ -u "git -c transfer.hiderefs="!refs/foo" upload-pack" \ remote:repo.git to clone remote:repo.git, overriding any hiding it has configured. There are two alternatives that were considered and rejected: 1. A generic config mechanism for removing an item from a list. E.g.: (e.g., "[transfer] hideRefs -= refs/foo"). This is nice because it could apply to other multi-valued config, as well. But it is not nearly as flexible. There is no way to say: [transfer] hideRefs = refs/secret hideRefs = refs/secret/not-so-secret Having explicit negative specifications means we can override previous entries, even if they are not the same literal string. 2. Adding another variable to override some parts of hideRefs (e.g., "exposeRefs"). This solves the problem from alternative (1), but it cannot easily obey the normal config precedence, because it would use two separate lists. For example: [transfer] hideRefs = refs/secret exposeRefs = refs/secret/not-so-secret hideRefs = refs/secret/not-so-secret/no-really-its-secret With two lists, we have to apply the "expose" rules first, and only then apply the "hide" rules. But that does not match what the above config intends. Of course we could internally parse that to a single list, respecting the ordering, which saves us having to invent the new "!" syntax. But using a single name communicates to the user that the ordering _is_ important. And "!" is well-known for negation, and should not appear at the beginning of a ref (it is actually valid in a ref-name, but all entries here should be fully-qualified, starting with "refs/"). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-07-28 22:23:26 +02:00
len = strlen(match);
if (!subject[len] || subject[len] == '/')
refs: support negative transfer.hideRefs If you hide a hierarchy of refs using the transfer.hideRefs config, there is no way to later override that config to "unhide" it. This patch implements a "negative" hide which causes matches to immediately be marked as unhidden, even if another match would hide it. We take care to apply the matches in reverse-order from how they are fed to us by the config machinery, as that lets our usual "last one wins" config precedence work (and entries in .git/config, for example, will override /etc/gitconfig). So you can now do: $ git config --system transfer.hideRefs refs/secret $ git config transfer.hideRefs '!refs/secret/not-so-secret' to hide refs/secret in all repos, except for one public bit in one specific repo. Or you can even do: $ git clone \ -u "git -c transfer.hiderefs="!refs/foo" upload-pack" \ remote:repo.git to clone remote:repo.git, overriding any hiding it has configured. There are two alternatives that were considered and rejected: 1. A generic config mechanism for removing an item from a list. E.g.: (e.g., "[transfer] hideRefs -= refs/foo"). This is nice because it could apply to other multi-valued config, as well. But it is not nearly as flexible. There is no way to say: [transfer] hideRefs = refs/secret hideRefs = refs/secret/not-so-secret Having explicit negative specifications means we can override previous entries, even if they are not the same literal string. 2. Adding another variable to override some parts of hideRefs (e.g., "exposeRefs"). This solves the problem from alternative (1), but it cannot easily obey the normal config precedence, because it would use two separate lists. For example: [transfer] hideRefs = refs/secret exposeRefs = refs/secret/not-so-secret hideRefs = refs/secret/not-so-secret/no-really-its-secret With two lists, we have to apply the "expose" rules first, and only then apply the "hide" rules. But that does not match what the above config intends. Of course we could internally parse that to a single list, respecting the ordering, which saves us having to invent the new "!" syntax. But using a single name communicates to the user that the ordering _is_ important. And "!" is well-known for negation, and should not appear at the beginning of a ref (it is actually valid in a ref-name, but all entries here should be fully-qualified, starting with "refs/"). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2015-07-28 22:23:26 +02:00
return !neg;
upload/receive-pack: allow hiding ref hierarchies A repository may have refs that are only used for its internal bookkeeping purposes that should not be exposed to the others that come over the network. Teach upload-pack to omit some refs from its initial advertisement by paying attention to the uploadpack.hiderefs multi-valued configuration variable. Do the same to receive-pack via the receive.hiderefs variable. As a convenient short-hand, allow using transfer.hiderefs to set the value to both of these variables. Any ref that is under the hierarchies listed on the value of these variable is excluded from responses to requests made by "ls-remote", "fetch", etc. (for upload-pack) and "push" (for receive-pack). Because these hidden refs do not count as OUR_REF, an attempt to fetch objects at the tip of them will be rejected, and because these refs do not get advertised, "git push :" will not see local branches that have the same name as them as "matching" ones to be sent. An attempt to update/delete these hidden refs with an explicit refspec, e.g. "git push origin :refs/hidden/22", is rejected. This is not a new restriction. To the pusher, it would appear that there is no such ref, so its push request will conclude with "Now that I sent you all the data, it is time for you to update the refs. I saw that the ref did not exist when I started pushing, and I want the result to point at this commit". The receiving end will apply the compare-and-swap rule to this request and rejects the push with "Well, your update request conflicts with somebody else; I see there is such a ref.", which is the right thing to do. Otherwise a push to a hidden ref will always be "the last one wins", which is not a good default. Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-01-19 01:08:30 +01:00
}
return 0;
}
const char *find_descendant_ref(const char *dirname,
const struct string_list *extras,
const struct string_list *skip)
{
int pos;
if (!extras)
return NULL;
/*
* Look at the place where dirname would be inserted into
* extras. If there is an entry at that position that starts
* with dirname (remember, dirname includes the trailing
* slash) and is not in skip, then we have a conflict.
*/
for (pos = string_list_find_insert_index(extras, dirname, 0);
pos < extras->nr; pos++) {
const char *extra_refname = extras->items[pos].string;
if (!starts_with(extra_refname, dirname))
break;
if (!skip || !string_list_has_string(skip, extra_refname))
return extra_refname;
}
return NULL;
}
int rename_ref_available(const char *old_refname, const char *new_refname)
{
struct string_list skip = STRING_LIST_INIT_NODUP;
struct strbuf err = STRBUF_INIT;
int ok;
string_list_insert(&skip, old_refname);
ok = !verify_refname_available(new_refname, NULL, &skip, &err);
if (!ok)
error("%s", err.buf);
string_list_clear(&skip, 0);
strbuf_release(&err);
return ok;
}
int head_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
{
struct object_id oid;
int flag;
if (submodule) {
if (resolve_gitlink_ref(submodule, "HEAD", oid.hash) == 0)
return fn("HEAD", &oid, 0, cb_data);
return 0;
}
if (!read_ref_full("HEAD", RESOLVE_REF_READING, oid.hash, &flag))
return fn("HEAD", &oid, flag, cb_data);
return 0;
}
int head_ref(each_ref_fn fn, void *cb_data)
{
return head_ref_submodule(NULL, fn, cb_data);
}
do_for_each_ref(): reimplement using reference iteration Use the reference iterator interface to implement do_for_each_ref(). Delete a bunch of code supporting the old for_each_ref() implementation. And now that do_for_each_ref() is generic code (it is no longer tied to the files backend), move it to refs.c. The implementation is via a new function, do_for_each_ref_iterator(), which takes a reference iterator as argument and calls a callback function for each of the references in the iterator. This change requires the current_ref performance hack for peel_ref() to be implemented via ref_iterator_peel() rather than peel_entry() because we don't have a ref_entry handy (it is hidden under three layers: file_ref_iterator, merge_ref_iterator, and cache_ref_iterator). So: * do_for_each_ref_iterator() records the active iterator in current_ref_iter while it is running. * peel_ref() checks whether current_ref_iter is pointing at the requested reference. If so, it asks the iterator to peel the reference (which it can do efficiently via its "peel" virtual function). For extra safety, we do the optimization only if the refname *addresses* are the same, not only if the refname *strings* are the same, to forestall possible mixups between refnames that come from different ref_iterators. Please note that this optimization of peel_ref() is only available when iterating via do_for_each_ref_iterator() (including all of the for_each_ref() functions, which call it indirectly). It would be complicated to implement a similar optimization when iterating directly using a reference iterator, because multiple reference iterators can be in use at the same time, with interleaved calls to ref_iterator_advance(). (In fact we do exactly that in merge_ref_iterator.) But that is not necessary. peel_ref() is only called while iterating over references. Callers who iterate using the for_each_ref() functions benefit from the optimization described above. Callers who iterate using reference iterators directly have access to the ref_iterator, so they can call ref_iterator_peel() themselves to get an analogous optimization in a more straightforward manner. If we rewrite all callers to use the reference iteration API, then we can remove the current_ref_iter hack permanently. Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-18 06:15:16 +02:00
/*
* Call fn for each reference in the specified submodule for which the
* refname begins with prefix. If trim is non-zero, then trim that
* many characters off the beginning of each refname before passing
* the refname to fn. flags can be DO_FOR_EACH_INCLUDE_BROKEN to
* include broken references in the iteration. If fn ever returns a
* non-zero value, stop the iteration and return that value;
* otherwise, return 0.
*/
static int do_for_each_ref(const char *submodule, const char *prefix,
each_ref_fn fn, int trim, int flags, void *cb_data)
{
struct ref_store *refs = get_ref_store(submodule);
do_for_each_ref(): reimplement using reference iteration Use the reference iterator interface to implement do_for_each_ref(). Delete a bunch of code supporting the old for_each_ref() implementation. And now that do_for_each_ref() is generic code (it is no longer tied to the files backend), move it to refs.c. The implementation is via a new function, do_for_each_ref_iterator(), which takes a reference iterator as argument and calls a callback function for each of the references in the iterator. This change requires the current_ref performance hack for peel_ref() to be implemented via ref_iterator_peel() rather than peel_entry() because we don't have a ref_entry handy (it is hidden under three layers: file_ref_iterator, merge_ref_iterator, and cache_ref_iterator). So: * do_for_each_ref_iterator() records the active iterator in current_ref_iter while it is running. * peel_ref() checks whether current_ref_iter is pointing at the requested reference. If so, it asks the iterator to peel the reference (which it can do efficiently via its "peel" virtual function). For extra safety, we do the optimization only if the refname *addresses* are the same, not only if the refname *strings* are the same, to forestall possible mixups between refnames that come from different ref_iterators. Please note that this optimization of peel_ref() is only available when iterating via do_for_each_ref_iterator() (including all of the for_each_ref() functions, which call it indirectly). It would be complicated to implement a similar optimization when iterating directly using a reference iterator, because multiple reference iterators can be in use at the same time, with interleaved calls to ref_iterator_advance(). (In fact we do exactly that in merge_ref_iterator.) But that is not necessary. peel_ref() is only called while iterating over references. Callers who iterate using the for_each_ref() functions benefit from the optimization described above. Callers who iterate using reference iterators directly have access to the ref_iterator, so they can call ref_iterator_peel() themselves to get an analogous optimization in a more straightforward manner. If we rewrite all callers to use the reference iteration API, then we can remove the current_ref_iter hack permanently. Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-18 06:15:16 +02:00
struct ref_iterator *iter;
if (!refs)
return 0;
iter = refs->be->iterator_begin(refs, prefix, flags);
do_for_each_ref(): reimplement using reference iteration Use the reference iterator interface to implement do_for_each_ref(). Delete a bunch of code supporting the old for_each_ref() implementation. And now that do_for_each_ref() is generic code (it is no longer tied to the files backend), move it to refs.c. The implementation is via a new function, do_for_each_ref_iterator(), which takes a reference iterator as argument and calls a callback function for each of the references in the iterator. This change requires the current_ref performance hack for peel_ref() to be implemented via ref_iterator_peel() rather than peel_entry() because we don't have a ref_entry handy (it is hidden under three layers: file_ref_iterator, merge_ref_iterator, and cache_ref_iterator). So: * do_for_each_ref_iterator() records the active iterator in current_ref_iter while it is running. * peel_ref() checks whether current_ref_iter is pointing at the requested reference. If so, it asks the iterator to peel the reference (which it can do efficiently via its "peel" virtual function). For extra safety, we do the optimization only if the refname *addresses* are the same, not only if the refname *strings* are the same, to forestall possible mixups between refnames that come from different ref_iterators. Please note that this optimization of peel_ref() is only available when iterating via do_for_each_ref_iterator() (including all of the for_each_ref() functions, which call it indirectly). It would be complicated to implement a similar optimization when iterating directly using a reference iterator, because multiple reference iterators can be in use at the same time, with interleaved calls to ref_iterator_advance(). (In fact we do exactly that in merge_ref_iterator.) But that is not necessary. peel_ref() is only called while iterating over references. Callers who iterate using the for_each_ref() functions benefit from the optimization described above. Callers who iterate using reference iterators directly have access to the ref_iterator, so they can call ref_iterator_peel() themselves to get an analogous optimization in a more straightforward manner. If we rewrite all callers to use the reference iteration API, then we can remove the current_ref_iter hack permanently. Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-06-18 06:15:16 +02:00
iter = prefix_ref_iterator_begin(iter, prefix, trim);
return do_for_each_ref_iterator(iter, fn, cb_data);
}
int for_each_ref(each_ref_fn fn, void *cb_data)
{
return do_for_each_ref(NULL, "", fn, 0, 0, cb_data);
}
int for_each_ref_submodule(const char *submodule, each_ref_fn fn, void *cb_data)
{
return do_for_each_ref(submodule, "", fn, 0, 0, cb_data);
}
int for_each_ref_in(const char *prefix, each_ref_fn fn, void *cb_data)
{
return do_for_each_ref(NULL, prefix, fn, strlen(prefix), 0, cb_data);
}
int for_each_fullref_in(const char *prefix, each_ref_fn fn, void *cb_data, unsigned int broken)
{
unsigned int flag = 0;
if (broken)
flag = DO_FOR_EACH_INCLUDE_BROKEN;
return do_for_each_ref(NULL, prefix, fn, 0, flag, cb_data);
}
int for_each_ref_in_submodule(const char *submodule, const char *prefix,
each_ref_fn fn, void *cb_data)
{
return do_for_each_ref(submodule, prefix, fn, strlen(prefix), 0, cb_data);
}
int for_each_replace_ref(each_ref_fn fn, void *cb_data)
{
return do_for_each_ref(NULL, git_replace_ref_base, fn,
strlen(git_replace_ref_base), 0, cb_data);
}
int for_each_namespaced_ref(each_ref_fn fn, void *cb_data)
{
struct strbuf buf = STRBUF_INIT;
int ret;
strbuf_addf(&buf, "%srefs/", get_git_namespace());
ret = do_for_each_ref(NULL, buf.buf, fn, 0, 0, cb_data);
strbuf_release(&buf);
return ret;
}
int for_each_rawref(each_ref_fn fn, void *cb_data)
{
return do_for_each_ref(NULL, "", fn, 0,
DO_FOR_EACH_INCLUDE_BROKEN, cb_data);
}
/* This function needs to return a meaningful errno on failure */
static const char *resolve_ref_recursively(struct ref_store *refs,
const char *refname,
int resolve_flags,
unsigned char *sha1, int *flags)
{
static struct strbuf sb_refname = STRBUF_INIT;
int unused_flags;
int symref_count;
if (!flags)
flags = &unused_flags;
*flags = 0;
if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
!refname_is_safe(refname)) {
errno = EINVAL;
return NULL;
}
/*
* dwim_ref() uses REF_ISBROKEN to distinguish between
* missing refs and refs that were present but invalid,
* to complain about the latter to stderr.
*
* We don't know whether the ref exists, so don't set
* REF_ISBROKEN yet.
*/
*flags |= REF_BAD_NAME;
}
for (symref_count = 0; symref_count < SYMREF_MAXDEPTH; symref_count++) {
unsigned int read_flags = 0;
if (refs->be->read_raw_ref(refs, refname,
sha1, &sb_refname, &read_flags)) {
*flags |= read_flags;
if (errno != ENOENT || (resolve_flags & RESOLVE_REF_READING))
return NULL;
hashclr(sha1);
if (*flags & REF_BAD_NAME)
*flags |= REF_ISBROKEN;
return refname;
}
*flags |= read_flags;
if (!(read_flags & REF_ISSYMREF)) {
if (*flags & REF_BAD_NAME) {
hashclr(sha1);
*flags |= REF_ISBROKEN;
}
return refname;
}
refname = sb_refname.buf;
if (resolve_flags & RESOLVE_REF_NO_RECURSE) {
hashclr(sha1);
return refname;
}
if (check_refname_format(refname, REFNAME_ALLOW_ONELEVEL)) {
if (!(resolve_flags & RESOLVE_REF_ALLOW_BAD_NAME) ||
!refname_is_safe(refname)) {
errno = EINVAL;
return NULL;
}
*flags |= REF_ISBROKEN | REF_BAD_NAME;
}
}
errno = ELOOP;
return NULL;
}
/* backend functions */
int refs_init_db(struct strbuf *err)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->init_db(refs, err);
}
const char *resolve_ref_unsafe(const char *refname, int resolve_flags,
unsigned char *sha1, int *flags)
{
return resolve_ref_recursively(get_ref_store(NULL), refname,
resolve_flags, sha1, flags);
}
int resolve_gitlink_ref(const char *submodule, const char *refname,
unsigned char *sha1)
{
size_t len = strlen(submodule);
struct ref_store *refs;
int flags;
while (len && submodule[len - 1] == '/')
len--;
if (!len)
return -1;
if (submodule[len]) {
/* We need to strip off one or more trailing slashes */
char *stripped = xmemdupz(submodule, len);
refs = get_ref_store(stripped);
free(stripped);
} else {
refs = get_ref_store(submodule);
}
if (!refs)
return -1;
if (!resolve_ref_recursively(refs, refname, 0, sha1, &flags) ||
is_null_sha1(sha1))
return -1;
return 0;
}
/* A pointer to the ref_store for the main repository: */
static struct ref_store *main_ref_store;
/* A linked list of ref_stores for submodules: */
static struct ref_store *submodule_ref_stores;
void base_ref_store_init(struct ref_store *refs,
const struct ref_storage_be *be,
const char *submodule)
{
refs->be = be;
if (!submodule) {
if (main_ref_store)
die("BUG: main_ref_store initialized twice");
refs->submodule = "";
refs->next = NULL;
main_ref_store = refs;
} else {
if (lookup_ref_store(submodule))
die("BUG: ref_store for submodule '%s' initialized twice",
submodule);
refs->submodule = xstrdup(submodule);
refs->next = submodule_ref_stores;
submodule_ref_stores = refs;
}
}
struct ref_store *ref_store_init(const char *submodule)
{
const char *be_name = "files";
struct ref_storage_be *be = find_ref_storage_backend(be_name);
if (!be)
die("BUG: reference backend %s is unknown", be_name);
if (!submodule || !*submodule)
return be->init(NULL);
else
return be->init(submodule);
}
struct ref_store *lookup_ref_store(const char *submodule)
{
struct ref_store *refs;
if (!submodule || !*submodule)
return main_ref_store;
for (refs = submodule_ref_stores; refs; refs = refs->next) {
if (!strcmp(submodule, refs->submodule))
return refs;
}
return NULL;
}
struct ref_store *get_ref_store(const char *submodule)
{
struct ref_store *refs;
if (!submodule || !*submodule) {
refs = lookup_ref_store(NULL);
if (!refs)
refs = ref_store_init(NULL);
} else {
refs = lookup_ref_store(submodule);
if (!refs) {
struct strbuf submodule_sb = STRBUF_INIT;
strbuf_addstr(&submodule_sb, submodule);
if (is_nonbare_repository_dir(&submodule_sb))
refs = ref_store_init(submodule);
strbuf_release(&submodule_sb);
}
}
return refs;
}
void assert_main_repository(struct ref_store *refs, const char *caller)
{
if (*refs->submodule)
die("BUG: %s called for a submodule", caller);
}
/* backend functions */
int pack_refs(unsigned int flags)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->pack_refs(refs, flags);
}
int peel_ref(const char *refname, unsigned char *sha1)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->peel_ref(refs, refname, sha1);
}
int create_symref(const char *ref_target, const char *refs_heads_master,
const char *logmsg)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->create_symref(refs, ref_target, refs_heads_master,
logmsg);
}
int ref_transaction_commit(struct ref_transaction *transaction,
struct strbuf *err)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->transaction_commit(refs, transaction, err);
}
int verify_refname_available(const char *refname,
const struct string_list *extra,
const struct string_list *skip,
struct strbuf *err)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->verify_refname_available(refs, refname, extra, skip, err);
}
int for_each_reflog(each_ref_fn fn, void *cb_data)
{
struct ref_store *refs = get_ref_store(NULL);
struct ref_iterator *iter;
iter = refs->be->reflog_iterator_begin(refs);
return do_for_each_ref_iterator(iter, fn, cb_data);
}
int for_each_reflog_ent_reverse(const char *refname, each_reflog_ent_fn fn,
void *cb_data)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->for_each_reflog_ent_reverse(refs, refname,
fn, cb_data);
}
int for_each_reflog_ent(const char *refname, each_reflog_ent_fn fn,
void *cb_data)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->for_each_reflog_ent(refs, refname, fn, cb_data);
}
int reflog_exists(const char *refname)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->reflog_exists(refs, refname);
}
int safe_create_reflog(const char *refname, int force_create,
struct strbuf *err)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->create_reflog(refs, refname, force_create, err);
}
int delete_reflog(const char *refname)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->delete_reflog(refs, refname);
}
int reflog_expire(const char *refname, const unsigned char *sha1,
unsigned int flags,
reflog_expiry_prepare_fn prepare_fn,
reflog_expiry_should_prune_fn should_prune_fn,
reflog_expiry_cleanup_fn cleanup_fn,
void *policy_cb_data)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->reflog_expire(refs, refname, sha1, flags,
prepare_fn, should_prune_fn,
cleanup_fn, policy_cb_data);
}
int initial_ref_transaction_commit(struct ref_transaction *transaction,
struct strbuf *err)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->initial_transaction_commit(refs, transaction, err);
}
int delete_refs(struct string_list *refnames, unsigned int flags)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->delete_refs(refs, refnames, flags);
}
int rename_ref(const char *oldref, const char *newref, const char *logmsg)
{
struct ref_store *refs = get_ref_store(NULL);
return refs->be->rename_ref(refs, oldref, newref, logmsg);
}