git-commit-vandalism/t/t0021-conversion.sh

1155 lines
34 KiB
Bash
Raw Normal View History

#!/bin/sh
test_description='blob conversion via gitattributes'
GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME=main
tests: mark tests relying on the current default for `init.defaultBranch` In addition to the manual adjustment to let the `linux-gcc` CI job run the test suite with `master` and then with `main`, this patch makes sure that GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME is set in all test scripts that currently rely on the initial branch name being `master by default. To determine which test scripts to mark up, the first step was to force-set the default branch name to `master` in - all test scripts that contain the keyword `master`, - t4211, which expects `t/t4211/history.export` with a hard-coded ref to initialize the default branch, - t5560 because it sources `t/t556x_common` which uses `master`, - t8002 and t8012 because both source `t/annotate-tests.sh` which also uses `master`) This trick was performed by this command: $ sed -i '/^ *\. \.\/\(test-lib\|lib-\(bash\|cvs\|git-svn\)\|gitweb-lib\)\.sh$/i\ GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME=master\ export GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME\ ' $(git grep -l master t/t[0-9]*.sh) \ t/t4211*.sh t/t5560*.sh t/t8002*.sh t/t8012*.sh After that, careful, manual inspection revealed that some of the test scripts containing the needle `master` do not actually rely on a specific default branch name: either they mention `master` only in a comment, or they initialize that branch specificially, or they do not actually refer to the current default branch. Therefore, the aforementioned modification was undone in those test scripts thusly: $ git checkout HEAD -- \ t/t0027-auto-crlf.sh t/t0060-path-utils.sh \ t/t1011-read-tree-sparse-checkout.sh \ t/t1305-config-include.sh t/t1309-early-config.sh \ t/t1402-check-ref-format.sh t/t1450-fsck.sh \ t/t2024-checkout-dwim.sh \ t/t2106-update-index-assume-unchanged.sh \ t/t3040-subprojects-basic.sh t/t3301-notes.sh \ t/t3308-notes-merge.sh t/t3423-rebase-reword.sh \ t/t3436-rebase-more-options.sh \ t/t4015-diff-whitespace.sh t/t4257-am-interactive.sh \ t/t5323-pack-redundant.sh t/t5401-update-hooks.sh \ t/t5511-refspec.sh t/t5526-fetch-submodules.sh \ t/t5529-push-errors.sh t/t5530-upload-pack-error.sh \ t/t5548-push-porcelain.sh \ t/t5552-skipping-fetch-negotiator.sh \ t/t5572-pull-submodule.sh t/t5608-clone-2gb.sh \ t/t5614-clone-submodules-shallow.sh \ t/t7508-status.sh t/t7606-merge-custom.sh \ t/t9302-fast-import-unpack-limit.sh We excluded one set of test scripts in these commands, though: the range of `git p4` tests. The reason? `git p4` stores the (foreign) remote branch in the branch called `p4/master`, which is obviously not the default branch. Manual analysis revealed that only five of these tests actually require a specific default branch name to pass; They were modified thusly: $ sed -i '/^ *\. \.\/lib-git-p4\.sh$/i\ GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME=master\ export GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME\ ' t/t980[0167]*.sh t/t9811*.sh Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-19 00:44:19 +01:00
export GIT_TEST_DEFAULT_INITIAL_BRANCH_NAME
. ./test-lib.sh
. "$TEST_DIRECTORY"/lib-terminal.sh
t0021: use Windows-friendly `pwd` In Git for Windows, when passing paths from shell scripts to regular Win32 executables, thanks to the MSYS2 runtime a somewhat magic path conversion happens that lets the shell script think that there is a file at `/git/Makefile` and the Win32 process it spawned thinks that the shell script said `C:/git-sdk-64/git/Makefile` instead. This conversion is documented in detail over here: https://www.msys2.org/docs/filesystem-paths/#automatic-unix-windows-path-conversion As all automatic conversions, there are gaps. For example, to avoid mistaking command-line options like `/LOG=log.txt` (which are quite common in the Windows world) from being mistaken for a Unix-style absolute path, the MSYS2 runtime specifically exempts arguments containing a `=` character from that conversion. We are about to change `test_cmp` to use `git diff --no-index`, which involves spawning precisely such a Win32 process. In combination, this would cause a failure in `t0021-conversion.sh` where we pass an absolute path containing an equal character to the `test_cmp` function. Seeing as the Unix tools like `cp` and `diff` that are used by Git's test suite in the Git for Windows SDK (thanks to the MSYS2 project) understand both Unix-style as well as Windows-style paths, we can stave off this problem by simply switching to Windows-style paths and side-stepping the need for any automatic path conversion. Note: The `PATH` variable is obviously special, as it is colon-separated in the MSYS2 Bash used by Git for Windows, and therefore _cannot_ contain absolute Windows-style paths, lest the colon after the drive letter is mistaken for a path separator. Therefore, we need to be careful to keep the Unix-style when modifying the `PATH` variable. Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-12-06 16:07:46 +01:00
PATH=$PWD:$PATH
TEST_ROOT="$(pwd)"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
write_script <<\EOF "$TEST_ROOT/rot13.sh"
tr \
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' \
'nopqrstuvwxyzabcdefghijklmNOPQRSTUVWXYZABCDEFGHIJKLM'
EOF
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
generate_random_characters () {
LEN=$1
NAME=$2
test-tool genrandom some-seed $LEN |
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
perl -pe "s/./chr((ord($&) % 26) + ord('a'))/sge" >"$TEST_ROOT/$NAME"
}
filter_git () {
rm -f *.log &&
git "$@"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
}
# Compare two files and ensure that `clean` and `smudge` respectively are
# called at least once if specified in the `expect` file. The actual
# invocation count is not relevant because their number can vary.
# c.f. https://lore.kernel.org/git/xmqqshv18i8i.fsf@gitster.mtv.corp.google.com/
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_cmp_count () {
expect=$1
actual=$2
for FILE in "$expect" "$actual"
do
sort "$FILE" | uniq -c |
sed -e "s/^ *[0-9][0-9]*[ ]*IN: /x IN: /" >"$FILE.tmp"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
done &&
test_cmp "$expect.tmp" "$actual.tmp" &&
rm "$expect.tmp" "$actual.tmp"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
}
# Compare two files but exclude all `clean` invocations because Git can
# call `clean` zero or more times.
# c.f. https://lore.kernel.org/git/xmqqshv18i8i.fsf@gitster.mtv.corp.google.com/
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_cmp_exclude_clean () {
expect=$1
actual=$2
for FILE in "$expect" "$actual"
do
grep -v "IN: clean" "$FILE" >"$FILE.tmp"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
done &&
test_cmp "$expect.tmp" "$actual.tmp" &&
rm "$expect.tmp" "$actual.tmp"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
}
# Check that the contents of two files are equal and that their rot13 version
# is equal to the committed content.
test_cmp_committed_rot13 () {
test_cmp "$1" "$2" &&
rot13.sh <"$1" >expected &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git cat-file blob :"$2" >actual &&
test_cmp expected actual
}
test_expect_success setup '
git config filter.rot13.smudge ./rot13.sh &&
git config filter.rot13.clean ./rot13.sh &&
{
echo "*.t filter=rot13" &&
echo "*.i ident"
} >.gitattributes &&
{
echo a b c d e f g h i j k l m &&
echo n o p q r s t u v w x y z &&
echo '\''$Id$'\''
} >test &&
cat test >test.t &&
cat test >test.o &&
cat test >test.i &&
git add test test.t test.i &&
rm -f test test.t test.i &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git checkout -- test test.t test.i &&
echo "content-test2" >test2.o &&
echo "content-test3 - filename with special characters" >"test3 '\''sq'\'',\$x=.o"
'
script='s/^\$Id: \([0-9a-f]*\) \$/\1/p'
test_expect_success check '
test_cmp test.o test &&
test_cmp test.o test.t &&
# ident should be stripped in the repository
git diff --raw --exit-code :test :test.i &&
id=$(git rev-parse --verify :test) &&
embedded=$(sed -ne "$script" test.i) &&
test "z$id" = "z$embedded" &&
git cat-file blob :test.t >test.r &&
./rot13.sh <test.o >test.t &&
test_cmp test.r test.t
'
# If an expanded ident ever gets into the repository, we want to make sure that
# it is collapsed before being expanded again on checkout
test_expect_success expanded_in_repo '
cat >expanded-keywords.0 <<-\EOF &&
File with expanded keywords
$Id$
$Id:$
$Id: 0000000000000000000000000000000000000000 $
$Id: NoSpaceAtEnd$
$Id:NoSpaceAtFront $
$Id:NoSpaceAtEitherEnd$
$Id: NoTerminatingSymbol
$Id: Foreign Commit With Spaces $
EOF
{
cat expanded-keywords.0 &&
printf "\$Id: NoTerminatingSymbolAtEOF"
} >expanded-keywords &&
cat expanded-keywords >expanded-keywords-crlf &&
git add expanded-keywords expanded-keywords-crlf &&
git commit -m "File with keywords expanded" &&
id=$(git rev-parse --verify :expanded-keywords) &&
cat >expected-output.0 <<-EOF &&
File with expanded keywords
\$Id: $id \$
\$Id: $id \$
\$Id: $id \$
\$Id: $id \$
\$Id: $id \$
\$Id: $id \$
\$Id: NoTerminatingSymbol
\$Id: Foreign Commit With Spaces \$
EOF
{
cat expected-output.0 &&
printf "\$Id: NoTerminatingSymbolAtEOF"
} >expected-output &&
{
append_cr <expected-output.0 &&
printf "\$Id: NoTerminatingSymbolAtEOF"
} >expected-output-crlf &&
{
echo "expanded-keywords ident" &&
echo "expanded-keywords-crlf ident text eol=crlf"
} >>.gitattributes &&
rm -f expanded-keywords expanded-keywords-crlf &&
git checkout -- expanded-keywords &&
test_cmp expected-output expanded-keywords &&
git checkout -- expanded-keywords-crlf &&
test_cmp expected-output-crlf expanded-keywords-crlf
'
# The use of %f in a filter definition is expanded to the path to
# the filename being smudged or cleaned. It must be shell escaped.
# First, set up some interesting file names and pet them in
# .gitattributes.
test_expect_success 'filter shell-escaped filenames' '
cat >argc.sh <<-EOF &&
#!$SHELL_PATH
cat >/dev/null
echo argc: \$# "\$@"
EOF
normal=name-no-magic &&
special="name with '\''sq'\'' and \$x" &&
echo some test text >"$normal" &&
echo some test text >"$special" &&
git add "$normal" "$special" &&
git commit -q -m "add files" &&
echo "name* filter=argc" >.gitattributes &&
# delete the files and check them out again, using a smudge filter
# that will count the args and echo the command-line back to us
test_config filter.argc.smudge "sh ./argc.sh %f" &&
rm "$normal" "$special" &&
git checkout -- "$normal" "$special" &&
# make sure argc.sh counted the right number of args
echo "argc: 1 $normal" >expect &&
test_cmp expect "$normal" &&
echo "argc: 1 $special" >expect &&
test_cmp expect "$special" &&
# do the same thing, but with more args in the filter expression
test_config filter.argc.smudge "sh ./argc.sh %f --my-extra-arg" &&
rm "$normal" "$special" &&
git checkout -- "$normal" "$special" &&
# make sure argc.sh counted the right number of args
echo "argc: 2 $normal --my-extra-arg" >expect &&
test_cmp expect "$normal" &&
echo "argc: 2 $special --my-extra-arg" >expect &&
test_cmp expect "$special" &&
:
'
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
test_expect_success 'required filter should filter data' '
test_config filter.required.smudge ./rot13.sh &&
test_config filter.required.clean ./rot13.sh &&
test_config filter.required.required true &&
echo "*.r filter=required" >.gitattributes &&
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
cat test.o >test.r &&
git add test.r &&
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
rm -f test.r &&
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
git checkout -- test.r &&
test_cmp test.o test.r &&
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
./rot13.sh <test.o >expected &&
git cat-file blob :test.r >actual &&
test_cmp expected actual
'
test_expect_success 'required filter smudge failure' '
test_config filter.failsmudge.smudge false &&
test_config filter.failsmudge.clean cat &&
test_config filter.failsmudge.required true &&
echo "*.fs filter=failsmudge" >.gitattributes &&
echo test >test.fs &&
git add test.fs &&
rm -f test.fs &&
test_must_fail git checkout -- test.fs
'
test_expect_success 'required filter clean failure' '
test_config filter.failclean.smudge cat &&
test_config filter.failclean.clean false &&
test_config filter.failclean.required true &&
echo "*.fc filter=failclean" >.gitattributes &&
echo test >test.fc &&
test_must_fail git add test.fc
'
test_expect_success 'required filter with absent clean field' '
test_config filter.absentclean.smudge cat &&
test_config filter.absentclean.required true &&
echo "*.ac filter=absentclean" >.gitattributes &&
echo test >test.ac &&
test_must_fail git add test.ac 2>stderr &&
test_i18ngrep "fatal: test.ac: clean filter .absentclean. failed" stderr
'
test_expect_success 'required filter with absent smudge field' '
test_config filter.absentsmudge.clean cat &&
test_config filter.absentsmudge.required true &&
echo "*.as filter=absentsmudge" >.gitattributes &&
echo test >test.as &&
git add test.as &&
rm -f test.as &&
test_must_fail git checkout -- test.as 2>stderr &&
test_i18ngrep "fatal: test.as: smudge filter absentsmudge failed" stderr
'
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
test_expect_success 'filtering large input to small output should use little memory' '
test_config filter.devnull.clean "cat >/dev/null" &&
test_config filter.devnull.required true &&
for i in $(test_seq 1 30); do printf "%1048576d" 1 || return 1; done >30MB &&
convert: stream from fd to required clean filter to reduce used address space The data is streamed to the filter process anyway. Better avoid mapping the file if possible. This is especially useful if a clean filter reduces the size, for example if it computes a sha1 for binary data, like git media. The file size that the previous implementation could handle was limited by the available address space; large files for example could not be handled with (32-bit) msysgit. The new implementation can filter files of any size as long as the filter output is small enough. The new code path is only taken if the filter is required. The filter consumes data directly from the fd. If it fails, the original data is not immediately available. The condition can easily be handled as a fatal error, which is expected for a required filter anyway. If the filter was not required, the condition would need to be handled in a different way, like seeking to 0 and reading the data. But this would require more restructuring of the code and is probably not worth it. The obvious approach of falling back to reading all data would not help achieving the main purpose of this patch, which is to handle large files with limited address space. If reading all data is an option, we can simply take the old code path right away and mmap the entire file. The environment variable GIT_MMAP_LIMIT, which has been introduced in a previous commit is used to test that the expected code path is taken. A related test that exercises required filters is modified to verify that the data actually has been modified on its way from the file system to the object store. Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2014-08-26 17:23:25 +02:00
echo "30MB filter=devnull" >.gitattributes &&
GIT_MMAP_LIMIT=1m GIT_ALLOC_LIMIT=1m git add 30MB
'
test_expect_success 'filter that does not read is fine' '
test-tool genrandom foo $((128 * 1024 + 1)) >big &&
echo "big filter=epipe" >.gitattributes &&
test_config filter.epipe.clean "echo xyzzy" &&
git add big &&
git cat-file blob :big >actual &&
echo xyzzy >expect &&
test_cmp expect actual
'
xread, xwrite: limit size of IO to 8MB Checking out 2GB or more through an external filter (see test) fails on Mac OS X 10.8.4 (12E55) for a 64-bit executable with: error: read from external filter cat failed error: cannot feed the input to external filter cat error: cat died of signal 13 error: external filter cat failed 141 error: external filter cat failed The reason is that read() immediately returns with EINVAL when asked to read more than 2GB. According to POSIX [1], if the value of nbyte passed to read() is greater than SSIZE_MAX, the result is implementation-defined. The write function has the same restriction [2]. Since OS X still supports running 32-bit executables, the 32-bit limit (SSIZE_MAX = INT_MAX = 2GB - 1) seems to be also imposed on 64-bit executables under certain conditions. For write, the problem has been addressed earlier [6c642a]. Address the problem for read() and write() differently, by limiting size of IO chunks unconditionally on all platforms in xread() and xwrite(). Large chunks only cause problems, like causing latencies when killing the process, even if OS X was not buggy. Doing IO in reasonably sized smaller chunks should have no negative impact on performance. The compat wrapper clipped_write() introduced earlier [6c642a] is not needed anymore. It will be reverted in a separate commit. The new test catches read and write problems. Note that 'git add' exits with 0 even if it prints filtering errors to stderr. The test, therefore, checks stderr. 'git add' should probably be changed (sometime in another commit) to exit with nonzero if filtering fails. The test could then be changed to use test_must_fail. Thanks to the following people for suggestions and testing: Johannes Sixt <j6t@kdbg.org> John Keeping <john@keeping.me.uk> Jonathan Nieder <jrnieder@gmail.com> Kyle J. McKay <mackyle@gmail.com> Linus Torvalds <torvalds@linux-foundation.org> Torsten Bögershausen <tboegi@web.de> [1] http://pubs.opengroup.org/onlinepubs/009695399/functions/read.html [2] http://pubs.opengroup.org/onlinepubs/009695399/functions/write.html [6c642a] commit 6c642a878688adf46b226903858b53e2d31ac5c3 compate/clipped-write.c: large write(2) fails on Mac OS X/XNU Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-08-20 08:43:54 +02:00
test_expect_success EXPENSIVE 'filter large file' '
test_config filter.largefile.smudge cat &&
test_config filter.largefile.clean cat &&
for i in $(test_seq 1 2048); do printf "%1048576d" 1 || return 1; done >2GB &&
xread, xwrite: limit size of IO to 8MB Checking out 2GB or more through an external filter (see test) fails on Mac OS X 10.8.4 (12E55) for a 64-bit executable with: error: read from external filter cat failed error: cannot feed the input to external filter cat error: cat died of signal 13 error: external filter cat failed 141 error: external filter cat failed The reason is that read() immediately returns with EINVAL when asked to read more than 2GB. According to POSIX [1], if the value of nbyte passed to read() is greater than SSIZE_MAX, the result is implementation-defined. The write function has the same restriction [2]. Since OS X still supports running 32-bit executables, the 32-bit limit (SSIZE_MAX = INT_MAX = 2GB - 1) seems to be also imposed on 64-bit executables under certain conditions. For write, the problem has been addressed earlier [6c642a]. Address the problem for read() and write() differently, by limiting size of IO chunks unconditionally on all platforms in xread() and xwrite(). Large chunks only cause problems, like causing latencies when killing the process, even if OS X was not buggy. Doing IO in reasonably sized smaller chunks should have no negative impact on performance. The compat wrapper clipped_write() introduced earlier [6c642a] is not needed anymore. It will be reverted in a separate commit. The new test catches read and write problems. Note that 'git add' exits with 0 even if it prints filtering errors to stderr. The test, therefore, checks stderr. 'git add' should probably be changed (sometime in another commit) to exit with nonzero if filtering fails. The test could then be changed to use test_must_fail. Thanks to the following people for suggestions and testing: Johannes Sixt <j6t@kdbg.org> John Keeping <john@keeping.me.uk> Jonathan Nieder <jrnieder@gmail.com> Kyle J. McKay <mackyle@gmail.com> Linus Torvalds <torvalds@linux-foundation.org> Torsten Bögershausen <tboegi@web.de> [1] http://pubs.opengroup.org/onlinepubs/009695399/functions/read.html [2] http://pubs.opengroup.org/onlinepubs/009695399/functions/write.html [6c642a] commit 6c642a878688adf46b226903858b53e2d31ac5c3 compate/clipped-write.c: large write(2) fails on Mac OS X/XNU Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-08-20 08:43:54 +02:00
echo "2GB filter=largefile" >.gitattributes &&
git add 2GB 2>err &&
test_must_be_empty err &&
xread, xwrite: limit size of IO to 8MB Checking out 2GB or more through an external filter (see test) fails on Mac OS X 10.8.4 (12E55) for a 64-bit executable with: error: read from external filter cat failed error: cannot feed the input to external filter cat error: cat died of signal 13 error: external filter cat failed 141 error: external filter cat failed The reason is that read() immediately returns with EINVAL when asked to read more than 2GB. According to POSIX [1], if the value of nbyte passed to read() is greater than SSIZE_MAX, the result is implementation-defined. The write function has the same restriction [2]. Since OS X still supports running 32-bit executables, the 32-bit limit (SSIZE_MAX = INT_MAX = 2GB - 1) seems to be also imposed on 64-bit executables under certain conditions. For write, the problem has been addressed earlier [6c642a]. Address the problem for read() and write() differently, by limiting size of IO chunks unconditionally on all platforms in xread() and xwrite(). Large chunks only cause problems, like causing latencies when killing the process, even if OS X was not buggy. Doing IO in reasonably sized smaller chunks should have no negative impact on performance. The compat wrapper clipped_write() introduced earlier [6c642a] is not needed anymore. It will be reverted in a separate commit. The new test catches read and write problems. Note that 'git add' exits with 0 even if it prints filtering errors to stderr. The test, therefore, checks stderr. 'git add' should probably be changed (sometime in another commit) to exit with nonzero if filtering fails. The test could then be changed to use test_must_fail. Thanks to the following people for suggestions and testing: Johannes Sixt <j6t@kdbg.org> John Keeping <john@keeping.me.uk> Jonathan Nieder <jrnieder@gmail.com> Kyle J. McKay <mackyle@gmail.com> Linus Torvalds <torvalds@linux-foundation.org> Torsten Bögershausen <tboegi@web.de> [1] http://pubs.opengroup.org/onlinepubs/009695399/functions/read.html [2] http://pubs.opengroup.org/onlinepubs/009695399/functions/write.html [6c642a] commit 6c642a878688adf46b226903858b53e2d31ac5c3 compate/clipped-write.c: large write(2) fails on Mac OS X/XNU Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-08-20 08:43:54 +02:00
rm -f 2GB &&
git checkout -- 2GB 2>err &&
test_must_be_empty err
xread, xwrite: limit size of IO to 8MB Checking out 2GB or more through an external filter (see test) fails on Mac OS X 10.8.4 (12E55) for a 64-bit executable with: error: read from external filter cat failed error: cannot feed the input to external filter cat error: cat died of signal 13 error: external filter cat failed 141 error: external filter cat failed The reason is that read() immediately returns with EINVAL when asked to read more than 2GB. According to POSIX [1], if the value of nbyte passed to read() is greater than SSIZE_MAX, the result is implementation-defined. The write function has the same restriction [2]. Since OS X still supports running 32-bit executables, the 32-bit limit (SSIZE_MAX = INT_MAX = 2GB - 1) seems to be also imposed on 64-bit executables under certain conditions. For write, the problem has been addressed earlier [6c642a]. Address the problem for read() and write() differently, by limiting size of IO chunks unconditionally on all platforms in xread() and xwrite(). Large chunks only cause problems, like causing latencies when killing the process, even if OS X was not buggy. Doing IO in reasonably sized smaller chunks should have no negative impact on performance. The compat wrapper clipped_write() introduced earlier [6c642a] is not needed anymore. It will be reverted in a separate commit. The new test catches read and write problems. Note that 'git add' exits with 0 even if it prints filtering errors to stderr. The test, therefore, checks stderr. 'git add' should probably be changed (sometime in another commit) to exit with nonzero if filtering fails. The test could then be changed to use test_must_fail. Thanks to the following people for suggestions and testing: Johannes Sixt <j6t@kdbg.org> John Keeping <john@keeping.me.uk> Jonathan Nieder <jrnieder@gmail.com> Kyle J. McKay <mackyle@gmail.com> Linus Torvalds <torvalds@linux-foundation.org> Torsten Bögershausen <tboegi@web.de> [1] http://pubs.opengroup.org/onlinepubs/009695399/functions/read.html [2] http://pubs.opengroup.org/onlinepubs/009695399/functions/write.html [6c642a] commit 6c642a878688adf46b226903858b53e2d31ac5c3 compate/clipped-write.c: large write(2) fails on Mac OS X/XNU Signed-off-by: Steffen Prohaska <prohaska@zib.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-08-20 08:43:54 +02:00
'
test_expect_success "filter: clean empty file" '
test_config filter.in-repo-header.clean "echo cleaned && cat" &&
test_config filter.in-repo-header.smudge "sed 1d" &&
echo "empty-in-worktree filter=in-repo-header" >>.gitattributes &&
>empty-in-worktree &&
echo cleaned >expected &&
git add empty-in-worktree &&
git show :empty-in-worktree >actual &&
test_cmp expected actual
'
test_expect_success "filter: smudge empty file" '
test_config filter.empty-in-repo.clean "cat >/dev/null" &&
test_config filter.empty-in-repo.smudge "echo smudged && cat" &&
echo "empty-in-repo filter=empty-in-repo" >>.gitattributes &&
echo dead data walking >empty-in-repo &&
git add empty-in-repo &&
echo smudged >expected &&
git checkout-index --prefix=filtered- empty-in-repo &&
test_cmp expected filtered-empty-in-repo
'
test_expect_success 'disable filter with empty override' '
test_config_global filter.disable.smudge false &&
test_config_global filter.disable.clean false &&
test_config filter.disable.smudge false &&
test_config filter.disable.clean false &&
echo "*.disable filter=disable" >.gitattributes &&
echo test >test.disable &&
git -c filter.disable.clean= add test.disable 2>err &&
test_must_be_empty err &&
rm -f test.disable &&
git -c filter.disable.smudge= checkout -- test.disable 2>err &&
test_must_be_empty err
'
test_expect_success 'diff does not reuse worktree files that need cleaning' '
test_config filter.counter.clean "echo . >>count; sed s/^/clean:/" &&
echo "file filter=counter" >.gitattributes &&
test_commit one file &&
test_commit two file &&
>count &&
git diff-tree -p HEAD &&
test_line_count = 0 count
'
test_expect_success 'required process filter should filter data' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_config_global filter.protocol.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
git add . &&
git commit -m "test commit 1" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git branch empty-branch &&
cp "$TEST_ROOT/test.o" test.r &&
cp "$TEST_ROOT/test2.o" test2.r &&
mkdir testsubdir &&
cp "$TEST_ROOT/test3 '\''sq'\'',\$x=.o" "testsubdir/test3 '\''sq'\'',\$x=.r" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
>test4-empty.r &&
S=$(test_file_size test.r) &&
S2=$(test_file_size test2.r) &&
S3=$(test_file_size "testsubdir/test3 '\''sq'\'',\$x=.r") &&
M=$(git hash-object test.r) &&
M2=$(git hash-object test2.r) &&
M3=$(git hash-object "testsubdir/test3 '\''sq'\'',\$x=.r") &&
EMPTY=$(git hash-object /dev/null) &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
filter_git add . &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: clean test.r $S [OK] -- OUT: $S . [OK]
IN: clean test2.r $S2 [OK] -- OUT: $S2 . [OK]
IN: clean test4-empty.r 0 [OK] -- OUT: 0 [OK]
IN: clean testsubdir/test3 '\''sq'\'',\$x=.r $S3 [OK] -- OUT: $S3 . [OK]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_count expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git commit -m "test commit 2" &&
MAIN=$(git rev-parse --verify main) &&
META="ref=refs/heads/main treeish=$MAIN" &&
rm -f test2.r "testsubdir/test3 '\''sq'\'',\$x=.r" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
filter_git checkout --quiet --no-progress . &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test2.r blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
# Make sure that the file appears dirty, so checkout below has to
# run the configured filter.
touch test.r &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
filter_git checkout --quiet --no-progress empty-branch &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: clean test.r $S [OK] -- OUT: $S . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
filter_git checkout --quiet --no-progress main &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test.r &&
test_cmp_committed_rot13 "$TEST_ROOT/test2.o" test2.r &&
test_cmp_committed_rot13 "$TEST_ROOT/test3 '\''sq'\'',\$x=.o" "testsubdir/test3 '\''sq'\'',\$x=.r"
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
)
'
test_expect_success 'required process filter should filter data for various subcommands' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
test_config_global filter.protocol.required true &&
(
cd repo &&
S=$(test_file_size test.r) &&
S2=$(test_file_size test2.r) &&
S3=$(test_file_size "testsubdir/test3 '\''sq'\'',\$x=.r") &&
M=$(git hash-object test.r) &&
M2=$(git hash-object test2.r) &&
M3=$(git hash-object "testsubdir/test3 '\''sq'\'',\$x=.r") &&
EMPTY=$(git hash-object /dev/null) &&
MAIN=$(git rev-parse --verify main) &&
cp "$TEST_ROOT/test.o" test5.r &&
git add test5.r &&
git commit -m "test commit 3" &&
git checkout empty-branch &&
filter_git rebase --onto empty-branch main^^ main &&
MAIN2=$(git rev-parse --verify main) &&
META="ref=refs/heads/main treeish=$MAIN2" &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge test5.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
git reset --hard empty-branch &&
filter_git reset --hard $MAIN &&
META="treeish=$MAIN" &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
git branch old-main $MAIN &&
git reset --hard empty-branch &&
filter_git reset --hard old-main &&
META="ref=refs/heads/old-main treeish=$MAIN" &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
git checkout -b merge empty-branch &&
git branch -f main $MAIN2 &&
filter_git merge main &&
META="treeish=$MAIN2" &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge test5.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
filter_git archive main >/dev/null &&
META="ref=refs/heads/main treeish=$MAIN2" &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge test5.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
TREE="$(git rev-parse $MAIN2^{tree})" &&
filter_git archive $TREE >/dev/null &&
META="treeish=$TREE" &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge test.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r $META blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
IN: smudge test4-empty.r $META blob=$EMPTY 0 [OK] -- OUT: 0 [OK]
IN: smudge test5.r $META blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge testsubdir/test3 '\''sq'\'',\$x=.r $META blob=$M3 $S3 [OK] -- OUT: $S3 . [OK]
STOP
EOF
test_cmp_exclude_clean expected.log debug.log
)
'
test_expect_success 'required process filter takes precedence' '
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_config_global filter.protocol.clean false &&
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_config_global filter.protocol.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
S=$(test_file_size test.r) &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
# Check that the process filter is invoked here
filter_git add . &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: clean test.r $S [OK] -- OUT: $S . [OK]
STOP
EOF
test_cmp_count expected.log debug.log
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
)
'
test_expect_success 'required process filter should be used only for "clean" operation only' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
S=$(test_file_size test.r) &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
filter_git add . &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: clean test.r $S [OK] -- OUT: $S . [OK]
STOP
EOF
test_cmp_count expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
rm test.r &&
filter_git checkout --quiet --no-progress . &&
# If the filter would be used for "smudge", too, we would see
# "IN: smudge test.r 57 [OK] -- OUT: 57 . [OK]" here
cat >expected.log <<-EOF &&
START
init handshake complete
STOP
EOF
test_cmp_exclude_clean expected.log debug.log
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
)
'
test_expect_success 'required process filter should process multiple packets' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_config_global filter.protocol.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
# Generate data requiring 1, 2, 3 packets
S=65516 && # PKTLINE_DATA_MAXLEN -> Maximal size of a packet
generate_random_characters $(($S )) 1pkt_1__.file &&
generate_random_characters $(($S +1)) 2pkt_1+1.file &&
generate_random_characters $(($S*2-1)) 2pkt_2-1.file &&
generate_random_characters $(($S*2 )) 2pkt_2__.file &&
generate_random_characters $(($S*2+1)) 3pkt_2+1.file &&
for FILE in "$TEST_ROOT"/*.file
do
cp "$FILE" . &&
rot13.sh <"$FILE" >"$FILE.rot13" || return 1
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
done &&
echo "*.file filter=protocol" >.gitattributes &&
filter_git add *.file .gitattributes &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: clean 1pkt_1__.file $(($S )) [OK] -- OUT: $(($S )) . [OK]
IN: clean 2pkt_1+1.file $(($S +1)) [OK] -- OUT: $(($S +1)) .. [OK]
IN: clean 2pkt_2-1.file $(($S*2-1)) [OK] -- OUT: $(($S*2-1)) .. [OK]
IN: clean 2pkt_2__.file $(($S*2 )) [OK] -- OUT: $(($S*2 )) .. [OK]
IN: clean 3pkt_2+1.file $(($S*2+1)) [OK] -- OUT: $(($S*2+1)) ... [OK]
STOP
EOF
test_cmp_count expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
M1="blob=$(git hash-object 1pkt_1__.file)" &&
M2="blob=$(git hash-object 2pkt_1+1.file)" &&
M3="blob=$(git hash-object 2pkt_2-1.file)" &&
M4="blob=$(git hash-object 2pkt_2__.file)" &&
M5="blob=$(git hash-object 3pkt_2+1.file)" &&
rm -f *.file debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
filter_git checkout --quiet --no-progress -- *.file &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge 1pkt_1__.file $M1 $(($S )) [OK] -- OUT: $(($S )) . [OK]
IN: smudge 2pkt_1+1.file $M2 $(($S +1)) [OK] -- OUT: $(($S +1)) .. [OK]
IN: smudge 2pkt_2-1.file $M3 $(($S*2-1)) [OK] -- OUT: $(($S*2-1)) .. [OK]
IN: smudge 2pkt_2__.file $M4 $(($S*2 )) [OK] -- OUT: $(($S*2 )) .. [OK]
IN: smudge 3pkt_2+1.file $M5 $(($S*2+1)) [OK] -- OUT: $(($S*2+1)) ... [OK]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
for FILE in *.file
do
test_cmp_committed_rot13 "$TEST_ROOT/$FILE" $FILE || return 1
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
done
)
'
test_expect_success 'required process filter with clean error should fail' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_config_global filter.protocol.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
echo "this is going to fail" >clean-write-fail.r &&
echo "content-test3-subdir" >test3.r &&
test_must_fail git add .
)
'
test_expect_success 'process filter should restart after unexpected write failure' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
cp "$TEST_ROOT/test2.o" test2.r &&
echo "this is going to fail" >smudge-write-fail.o &&
cp smudge-write-fail.o smudge-write-fail.r &&
S=$(test_file_size test.r) &&
S2=$(test_file_size test2.r) &&
SF=$(test_file_size smudge-write-fail.r) &&
M=$(git hash-object test.r) &&
M2=$(git hash-object test2.r) &&
MF=$(git hash-object smudge-write-fail.r) &&
rm -f debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git add . &&
rm -f *.r &&
rm -f debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git checkout --quiet --no-progress . 2>git-stderr.log &&
grep "smudge write error" git-stderr.log &&
test_i18ngrep "error: external filter" git-stderr.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge smudge-write-fail.r blob=$MF $SF [OK] -- [WRITE FAIL]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
START
init handshake complete
IN: smudge test.r blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test.r &&
test_cmp_committed_rot13 "$TEST_ROOT/test2.o" test2.r &&
# Smudge failed
! test_cmp smudge-write-fail.o smudge-write-fail.r &&
rot13.sh <smudge-write-fail.o >expected &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git cat-file blob :smudge-write-fail.r >actual &&
test_cmp expected actual
)
'
test_expect_success 'process filter should not be restarted if it signals an error' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
cp "$TEST_ROOT/test2.o" test2.r &&
echo "this will cause an error" >error.o &&
cp error.o error.r &&
S=$(test_file_size test.r) &&
S2=$(test_file_size test2.r) &&
SE=$(test_file_size error.r) &&
M=$(git hash-object test.r) &&
M2=$(git hash-object test2.r) &&
ME=$(git hash-object error.r) &&
rm -f debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git add . &&
rm -f *.r &&
filter_git checkout --quiet --no-progress . &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge error.r blob=$ME $SE [OK] -- [ERROR]
IN: smudge test.r blob=$M $S [OK] -- OUT: $S . [OK]
IN: smudge test2.r blob=$M2 $S2 [OK] -- OUT: $S2 . [OK]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test.r &&
test_cmp_committed_rot13 "$TEST_ROOT/test2.o" test2.r &&
test_cmp error.o error.r
)
'
test_expect_success 'process filter abort stops processing of all further files' '
test_config_global filter.protocol.process "test-tool rot13-filter --log=debug.log clean smudge" &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
cp "$TEST_ROOT/test2.o" test2.r &&
echo "error this blob and all future blobs" >abort.o &&
cp abort.o abort.r &&
M="blob=$(git hash-object abort.r)" &&
rm -f debug.log &&
SA=$(test_file_size abort.r) &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
git add . &&
rm -f *.r &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
# Note: This test assumes that Git filters files in alphabetical
# order ("abort.r" before "test.r").
filter_git checkout --quiet --no-progress . &&
cat >expected.log <<-EOF &&
START
init handshake complete
IN: smudge abort.r $M $SA [OK] -- [ABORT]
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
STOP
EOF
test_cmp_exclude_clean expected.log debug.log &&
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
test_cmp "$TEST_ROOT/test.o" test.r &&
test_cmp "$TEST_ROOT/test2.o" test2.r &&
test_cmp abort.o abort.r
)
'
test_expect_success PERL 'invalid process filter must fail (and not hang!)' '
test_config_global filter.protocol.process cat &&
test_config_global filter.protocol.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.r filter=protocol" >.gitattributes &&
cp "$TEST_ROOT/test.o" test.r &&
test_must_fail git add . 2>git-stderr.log &&
grep "expected git-filter-server" git-stderr.log
convert: add filter.<driver>.process option Git's clean/smudge mechanism invokes an external filter process for every single blob that is affected by a filter. If Git filters a lot of blobs then the startup time of the external filter processes can become a significant part of the overall Git execution time. In a preliminary performance test this developer used a clean/smudge filter written in golang to filter 12,000 files. This process took 364s with the existing filter mechanism and 5s with the new mechanism. See details here: https://github.com/github/git-lfs/pull/1382 This patch adds the `filter.<driver>.process` string option which, if used, keeps the external filter process running and processes all blobs with the packet format (pkt-line) based protocol over standard input and standard output. The full protocol is explained in detail in `Documentation/gitattributes.txt`. A few key decisions: * The long running filter process is referred to as filter protocol version 2 because the existing single shot filter invocation is considered version 1. * Git sends a welcome message and expects a response right after the external filter process has started. This ensures that Git will not hang if a version 1 filter is incorrectly used with the filter.<driver>.process option for version 2 filters. In addition, Git can detect this kind of error and warn the user. * The status of a filter operation (e.g. "success" or "error) is set before the actual response and (if necessary!) re-set after the response. The advantage of this two step status response is that if the filter detects an error early, then the filter can communicate this and Git does not even need to create structures to read the response. * All status responses are pkt-line lists terminated with a flush packet. This allows us to send other status fields with the same protocol in the future. Helped-by: Martin-Louis Bright <mlbright@gmail.com> Reviewed-by: Jakub Narebski <jnareb@gmail.com> Signed-off-by: Lars Schneider <larsxschneider@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2016-10-17 01:20:37 +02:00
)
'
test_expect_success 'delayed checkout in process filter' '
test_config_global filter.a.process "test-tool rot13-filter --log=a.log clean smudge delay" &&
test_config_global filter.a.required true &&
test_config_global filter.b.process "test-tool rot13-filter --log=b.log clean smudge delay" &&
test_config_global filter.b.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.a filter=a" >.gitattributes &&
echo "*.b filter=b" >>.gitattributes &&
cp "$TEST_ROOT/test.o" test.a &&
cp "$TEST_ROOT/test.o" test-delay10.a &&
cp "$TEST_ROOT/test.o" test-delay11.a &&
cp "$TEST_ROOT/test.o" test-delay20.a &&
cp "$TEST_ROOT/test.o" test-delay10.b &&
git add . &&
git commit -m "test commit"
) &&
S=$(test_file_size "$TEST_ROOT/test.o") &&
PM="ref=refs/heads/main treeish=$(git -C repo rev-parse --verify main) " &&
M="${PM}blob=$(git -C repo rev-parse --verify main:test.a)" &&
cat >a.exp <<-EOF &&
START
init handshake complete
IN: smudge test.a $M $S [OK] -- OUT: $S . [OK]
IN: smudge test-delay10.a $M $S [OK] -- [DELAYED]
IN: smudge test-delay11.a $M $S [OK] -- [DELAYED]
IN: smudge test-delay20.a $M $S [OK] -- [DELAYED]
IN: list_available_blobs test-delay10.a test-delay11.a [OK]
IN: smudge test-delay10.a $M 0 [OK] -- OUT: $S . [OK]
IN: smudge test-delay11.a $M 0 [OK] -- OUT: $S . [OK]
IN: list_available_blobs test-delay20.a [OK]
IN: smudge test-delay20.a $M 0 [OK] -- OUT: $S . [OK]
IN: list_available_blobs [OK]
STOP
EOF
cat >b.exp <<-EOF &&
START
init handshake complete
IN: smudge test-delay10.b $M $S [OK] -- [DELAYED]
IN: list_available_blobs test-delay10.b [OK]
IN: smudge test-delay10.b $M 0 [OK] -- OUT: $S . [OK]
IN: list_available_blobs [OK]
STOP
EOF
rm -rf repo-cloned &&
filter_git clone repo repo-cloned &&
test_cmp_count a.exp repo-cloned/a.log &&
test_cmp_count b.exp repo-cloned/b.log &&
(
cd repo-cloned &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay10.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay11.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay20.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay10.b &&
rm *.a *.b &&
filter_git checkout . &&
# We are not checking out a ref here, so filter out ref metadata.
sed -e "s!$PM!!" ../a.exp >a.exp.filtered &&
sed -e "s!$PM!!" ../b.exp >b.exp.filtered &&
test_cmp_count a.exp.filtered a.log &&
test_cmp_count b.exp.filtered b.log &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay10.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay11.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay20.a &&
test_cmp_committed_rot13 "$TEST_ROOT/test.o" test-delay10.b
)
'
test_expect_success 'missing file in delayed checkout' '
test_config_global filter.bug.process "test-tool rot13-filter --log=bug.log clean smudge delay" &&
test_config_global filter.bug.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.a filter=bug" >.gitattributes &&
cp "$TEST_ROOT/test.o" missing-delay.a &&
git add . &&
git commit -m "test commit"
) &&
rm -rf repo-cloned &&
test_must_fail git clone repo repo-cloned 2>git-stderr.log &&
grep "error: .missing-delay\.a. was not filtered properly" git-stderr.log
'
test_expect_success 'invalid file in delayed checkout' '
test_config_global filter.bug.process "test-tool rot13-filter --log=bug.log clean smudge delay" &&
test_config_global filter.bug.required true &&
rm -rf repo &&
mkdir repo &&
(
cd repo &&
git init &&
echo "*.a filter=bug" >.gitattributes &&
cp "$TEST_ROOT/test.o" invalid-delay.a &&
cp "$TEST_ROOT/test.o" unfiltered &&
git add . &&
git commit -m "test commit"
) &&
rm -rf repo-cloned &&
test_must_fail git clone repo repo-cloned 2>git-stderr.log &&
grep "error: external filter .* signaled that .unfiltered. is now available although it has not been delayed earlier" git-stderr.log
'
checkout: fix bug that makes checkout follow symlinks in leading path Before checking out a file, we have to confirm that all of its leading components are real existing directories. And to reduce the number of lstat() calls in this process, we cache the last leading path known to contain only directories. However, when a path collision occurs (e.g. when checking out case-sensitive files in case-insensitive file systems), a cached path might have its file type changed on disk, leaving the cache on an invalid state. Normally, this doesn't bring any bad consequences as we usually check out files in index order, and therefore, by the time the cached path becomes outdated, we no longer need it anyway (because all files in that directory would have already been written). But, there are some users of the checkout machinery that do not always follow the index order. In particular: checkout-index writes the paths in the same order that they appear on the CLI (or stdin); and the delayed checkout feature -- used when a long-running filter process replies with "status=delayed" -- postpones the checkout of some entries, thus modifying the checkout order. When we have to check out an out-of-order entry and the lstat() cache is invalid (due to a previous path collision), checkout_entry() may end up using the invalid data and thrusting that the leading components are real directories when, in reality, they are not. In the best case scenario, where the directory was replaced by a regular file, the user will get an error: "fatal: unable to create file 'foo/bar': Not a directory". But if the directory was replaced by a symlink, checkout could actually end up following the symlink and writing the file at a wrong place, even outside the repository. Since delayed checkout is affected by this bug, it could be used by an attacker to write arbitrary files during the clone of a maliciously crafted repository. Some candidate solutions considered were to disable the lstat() cache during unordered checkouts or sort the entries before passing them to the checkout machinery. But both ideas include some performance penalty and they don't future-proof the code against new unordered use cases. Instead, we now manually reset the lstat cache whenever we successfully remove a directory. Note: We are not even checking whether the directory was the same as the lstat cache points to because we might face a scenario where the paths refer to the same location but differ due to case folding, precomposed UTF-8 issues, or the presence of `..` components in the path. Two regression tests, with case-collisions and utf8-collisions, are also added for both checkout-index and delayed checkout. Note: to make the previously mentioned clone attack unfeasible, it would be sufficient to reset the lstat cache only after the remove_subtree() call inside checkout_entry(). This is the place where we would remove a directory whose path collides with the path of another entry that we are currently trying to check out (possibly a symlink). However, in the interest of a thorough fix that does not leave Git open to similar-but-not-identical attack vectors, we decided to intercept all `rmdir()` calls in one fell swoop. This addresses CVE-2021-21300. Co-authored-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br>
2020-12-10 14:27:55 +01:00
for mode in 'case' 'utf-8'
do
case "$mode" in
case) dir='A' symlink='a' mode_prereq='CASE_INSENSITIVE_FS' ;;
utf-8)
dir=$(printf "\141\314\210") symlink=$(printf "\303\244")
mode_prereq='UTF8_NFD_TO_NFC' ;;
esac
test_expect_success SYMLINKS,$mode_prereq \
checkout: fix bug that makes checkout follow symlinks in leading path Before checking out a file, we have to confirm that all of its leading components are real existing directories. And to reduce the number of lstat() calls in this process, we cache the last leading path known to contain only directories. However, when a path collision occurs (e.g. when checking out case-sensitive files in case-insensitive file systems), a cached path might have its file type changed on disk, leaving the cache on an invalid state. Normally, this doesn't bring any bad consequences as we usually check out files in index order, and therefore, by the time the cached path becomes outdated, we no longer need it anyway (because all files in that directory would have already been written). But, there are some users of the checkout machinery that do not always follow the index order. In particular: checkout-index writes the paths in the same order that they appear on the CLI (or stdin); and the delayed checkout feature -- used when a long-running filter process replies with "status=delayed" -- postpones the checkout of some entries, thus modifying the checkout order. When we have to check out an out-of-order entry and the lstat() cache is invalid (due to a previous path collision), checkout_entry() may end up using the invalid data and thrusting that the leading components are real directories when, in reality, they are not. In the best case scenario, where the directory was replaced by a regular file, the user will get an error: "fatal: unable to create file 'foo/bar': Not a directory". But if the directory was replaced by a symlink, checkout could actually end up following the symlink and writing the file at a wrong place, even outside the repository. Since delayed checkout is affected by this bug, it could be used by an attacker to write arbitrary files during the clone of a maliciously crafted repository. Some candidate solutions considered were to disable the lstat() cache during unordered checkouts or sort the entries before passing them to the checkout machinery. But both ideas include some performance penalty and they don't future-proof the code against new unordered use cases. Instead, we now manually reset the lstat cache whenever we successfully remove a directory. Note: We are not even checking whether the directory was the same as the lstat cache points to because we might face a scenario where the paths refer to the same location but differ due to case folding, precomposed UTF-8 issues, or the presence of `..` components in the path. Two regression tests, with case-collisions and utf8-collisions, are also added for both checkout-index and delayed checkout. Note: to make the previously mentioned clone attack unfeasible, it would be sufficient to reset the lstat cache only after the remove_subtree() call inside checkout_entry(). This is the place where we would remove a directory whose path collides with the path of another entry that we are currently trying to check out (possibly a symlink). However, in the interest of a thorough fix that does not leave Git open to similar-but-not-identical attack vectors, we decided to intercept all `rmdir()` calls in one fell swoop. This addresses CVE-2021-21300. Co-authored-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br>
2020-12-10 14:27:55 +01:00
"delayed checkout with $mode-collision don't write to the wrong place" '
test_config_global filter.delay.process \
"test-tool rot13-filter --always-delay --log=delayed.log clean smudge delay" &&
checkout: fix bug that makes checkout follow symlinks in leading path Before checking out a file, we have to confirm that all of its leading components are real existing directories. And to reduce the number of lstat() calls in this process, we cache the last leading path known to contain only directories. However, when a path collision occurs (e.g. when checking out case-sensitive files in case-insensitive file systems), a cached path might have its file type changed on disk, leaving the cache on an invalid state. Normally, this doesn't bring any bad consequences as we usually check out files in index order, and therefore, by the time the cached path becomes outdated, we no longer need it anyway (because all files in that directory would have already been written). But, there are some users of the checkout machinery that do not always follow the index order. In particular: checkout-index writes the paths in the same order that they appear on the CLI (or stdin); and the delayed checkout feature -- used when a long-running filter process replies with "status=delayed" -- postpones the checkout of some entries, thus modifying the checkout order. When we have to check out an out-of-order entry and the lstat() cache is invalid (due to a previous path collision), checkout_entry() may end up using the invalid data and thrusting that the leading components are real directories when, in reality, they are not. In the best case scenario, where the directory was replaced by a regular file, the user will get an error: "fatal: unable to create file 'foo/bar': Not a directory". But if the directory was replaced by a symlink, checkout could actually end up following the symlink and writing the file at a wrong place, even outside the repository. Since delayed checkout is affected by this bug, it could be used by an attacker to write arbitrary files during the clone of a maliciously crafted repository. Some candidate solutions considered were to disable the lstat() cache during unordered checkouts or sort the entries before passing them to the checkout machinery. But both ideas include some performance penalty and they don't future-proof the code against new unordered use cases. Instead, we now manually reset the lstat cache whenever we successfully remove a directory. Note: We are not even checking whether the directory was the same as the lstat cache points to because we might face a scenario where the paths refer to the same location but differ due to case folding, precomposed UTF-8 issues, or the presence of `..` components in the path. Two regression tests, with case-collisions and utf8-collisions, are also added for both checkout-index and delayed checkout. Note: to make the previously mentioned clone attack unfeasible, it would be sufficient to reset the lstat cache only after the remove_subtree() call inside checkout_entry(). This is the place where we would remove a directory whose path collides with the path of another entry that we are currently trying to check out (possibly a symlink). However, in the interest of a thorough fix that does not leave Git open to similar-but-not-identical attack vectors, we decided to intercept all `rmdir()` calls in one fell swoop. This addresses CVE-2021-21300. Co-authored-by: Johannes Schindelin <johannes.schindelin@gmx.de> Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br>
2020-12-10 14:27:55 +01:00
test_config_global filter.delay.required true &&
git init $mode-collision &&
(
cd $mode-collision &&
mkdir target-dir &&
empty_oid=$(printf "" | git hash-object -w --stdin) &&
symlink_oid=$(printf "%s" "$PWD/target-dir" | git hash-object -w --stdin) &&
attr_oid=$(echo "$dir/z filter=delay" | git hash-object -w --stdin) &&
cat >objs <<-EOF &&
100644 blob $empty_oid $dir/x
100644 blob $empty_oid $dir/y
100644 blob $empty_oid $dir/z
120000 blob $symlink_oid $symlink
100644 blob $attr_oid .gitattributes
EOF
git update-index --index-info <objs &&
git commit -m "test commit"
) &&
git clone $mode-collision $mode-collision-cloned &&
# Make sure z was really delayed
grep "IN: smudge $dir/z .* \\[DELAYED\\]" $mode-collision-cloned/delayed.log &&
# Should not create $dir/z at $symlink/z
test_path_is_missing $mode-collision/target-dir/z
'
done
test_expect_success SYMLINKS,CASE_INSENSITIVE_FS \
"delayed checkout with submodule collision don't write to the wrong place" '
git init collision-with-submodule &&
(
cd collision-with-submodule &&
git config filter.delay.process "test-tool rot13-filter --always-delay --log=delayed.log clean smudge delay" &&
git config filter.delay.required true &&
# We need Git to treat the submodule "a" and the
# leading dir "A" as different paths in the index.
git config --local core.ignoreCase false &&
empty_oid=$(printf "" | git hash-object -w --stdin) &&
attr_oid=$(echo "A/B/y filter=delay" | git hash-object -w --stdin) &&
cat >objs <<-EOF &&
100644 blob $empty_oid A/B/x
100644 blob $empty_oid A/B/y
100644 blob $attr_oid .gitattributes
EOF
git update-index --index-info <objs &&
git init a &&
mkdir target-dir &&
symlink_oid=$(printf "%s" "$PWD/target-dir" | git -C a hash-object -w --stdin) &&
echo "120000 blob $symlink_oid b" >objs &&
git -C a update-index --index-info <objs &&
git -C a commit -m sub &&
git submodule add ./a &&
git commit -m super &&
git checkout --recurse-submodules . &&
grep "IN: smudge A/B/y .* \\[DELAYED\\]" delayed.log &&
test_path_is_missing target-dir/y
)
'
test_expect_success 'setup for progress tests' '
git init progress &&
(
cd progress &&
git config filter.delay.process "test-tool rot13-filter --log=delay-progress.log clean smudge delay" &&
git config filter.delay.required true &&
echo "*.a filter=delay" >.gitattributes &&
touch test-delay10.a &&
git add . &&
git commit -m files
)
'
test_delayed_checkout_progress () {
if test "$1" = "!"
then
local expect_progress=N &&
shift
else
local expect_progress=
fi &&
if test $# -lt 1
then
BUG "no command given to test_delayed_checkout_progress"
fi &&
(
cd progress &&
GIT_PROGRESS_DELAY=0 &&
export GIT_PROGRESS_DELAY &&
rm -f *.a delay-progress.log &&
"$@" 2>err &&
grep "IN: smudge test-delay10.a .* \\[DELAYED\\]" delay-progress.log &&
if test "$expect_progress" = N
then
! grep "Filtering content" err
else
grep "Filtering content" err
fi
)
}
for mode in pathspec branch
do
case "$mode" in
pathspec) opt='.' ;;
branch) opt='-f HEAD' ;;
esac
test_expect_success PERL,TTY "delayed checkout shows progress by default on tty ($mode checkout)" '
test_delayed_checkout_progress test_terminal git checkout $opt
'
test_expect_success PERL "delayed checkout ommits progress on non-tty ($mode checkout)" '
test_delayed_checkout_progress ! git checkout $opt
'
test_expect_success PERL,TTY "delayed checkout ommits progress with --quiet ($mode checkout)" '
test_delayed_checkout_progress ! test_terminal git checkout --quiet $opt
'
test_expect_success PERL,TTY "delayed checkout honors --[no]-progress ($mode checkout)" '
test_delayed_checkout_progress ! test_terminal git checkout --no-progress $opt &&
test_delayed_checkout_progress test_terminal git checkout --quiet --progress $opt
'
done
test_expect_success 'delayed checkout correctly reports the number of updated entries' '
rm -rf repo &&
git init repo &&
(
cd repo &&
git config filter.delay.process "test-tool rot13-filter --log=delayed.log clean smudge delay" &&
git config filter.delay.required true &&
echo "*.a filter=delay" >.gitattributes &&
echo a >test-delay10.a &&
echo a >test-delay11.a &&
git add . &&
git commit -m files &&
rm *.a &&
git checkout . 2>err &&
grep "IN: smudge test-delay10.a .* \\[DELAYED\\]" delayed.log &&
grep "IN: smudge test-delay11.a .* \\[DELAYED\\]" delayed.log &&
grep "Updated 2 paths from the index" err
)
'
test_done