2022-08-04 18:28:39 +02:00
|
|
|
gitformat-pack(5)
|
|
|
|
=================
|
|
|
|
|
|
|
|
NAME
|
|
|
|
----
|
|
|
|
gitformat-pack - Git pack format
|
|
|
|
|
|
|
|
|
|
|
|
SYNOPSIS
|
|
|
|
--------
|
|
|
|
[verse]
|
|
|
|
$GIT_DIR/objects/pack/pack-*.{pack,idx}
|
|
|
|
$GIT_DIR/objects/pack/pack-*.rev
|
|
|
|
$GIT_DIR/objects/pack/multi-pack-index
|
|
|
|
|
|
|
|
DESCRIPTION
|
|
|
|
-----------
|
|
|
|
|
|
|
|
The Git pack format is now Git stores most of its primary repository
|
|
|
|
data. Over the lietime af a repository loose objects (if any) and
|
|
|
|
smaller packs are consolidated into larger pack(s). See
|
|
|
|
linkgit:git-gc[1] and linkgit:git-pack-objects[1].
|
|
|
|
|
|
|
|
The pack format is also used over-the-wire, see
|
|
|
|
e.g. linkgit:gitprotocol-v2[5], as well as being a part of
|
|
|
|
other container formats in the case of linkgit:gitformat-bundle[5].
|
2006-04-07 11:07:40 +02:00
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
== Checksums and object IDs
|
|
|
|
|
|
|
|
In a repository using the traditional SHA-1, pack checksums, index checksums,
|
|
|
|
and object IDs (object names) mentioned below are all computed using SHA-1.
|
|
|
|
Similarly, in SHA-256 repositories, these values are computed using SHA-256.
|
|
|
|
|
2012-10-16 19:24:16 +02:00
|
|
|
== pack-*.pack files have the following format:
|
2006-04-07 11:07:40 +02:00
|
|
|
|
2007-12-14 12:28:14 +01:00
|
|
|
- A header appears at the beginning and consists of the following:
|
2006-04-07 11:07:40 +02:00
|
|
|
|
2006-05-29 09:17:18 +02:00
|
|
|
4-byte signature:
|
|
|
|
The signature is: {'P', 'A', 'C', 'K'}
|
|
|
|
|
|
|
|
4-byte version number (network byte order):
|
2013-01-21 20:16:20 +01:00
|
|
|
Git currently accepts version number 2 or 3 but
|
2006-05-29 09:17:18 +02:00
|
|
|
generates version 2 only.
|
|
|
|
|
2006-04-07 11:07:40 +02:00
|
|
|
4-byte number of objects contained in the pack (network byte order)
|
|
|
|
|
|
|
|
Observation: we cannot have more than 4G versions ;-) and
|
|
|
|
more than 4G objects in a pack.
|
|
|
|
|
|
|
|
- The header is followed by number of object entries, each of
|
|
|
|
which looks like this:
|
|
|
|
|
|
|
|
(undeltified representation)
|
2007-03-21 19:43:37 +01:00
|
|
|
n-byte type and length (3-bit type, (n-1)*7+4-bit length)
|
2006-04-07 11:07:40 +02:00
|
|
|
compressed data
|
|
|
|
|
|
|
|
(deltified representation)
|
2007-03-21 19:43:37 +01:00
|
|
|
n-byte type and length (3-bit type, (n-1)*7+4-bit length)
|
2020-08-14 00:49:00 +02:00
|
|
|
base object name if OBJ_REF_DELTA or a negative relative
|
2013-04-12 07:56:24 +02:00
|
|
|
offset from the delta object's position in the pack if this
|
|
|
|
is an OBJ_OFS_DELTA object
|
2006-04-07 11:07:40 +02:00
|
|
|
compressed delta data
|
|
|
|
|
|
|
|
Observation: length of each object is encoded in a variable
|
|
|
|
length format and is not constrained to 32-bit or anything.
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
- The trailer records a pack checksum of all of the above.
|
2006-04-07 11:07:40 +02:00
|
|
|
|
2018-05-11 08:55:23 +02:00
|
|
|
=== Object types
|
|
|
|
|
|
|
|
Valid object types are:
|
|
|
|
|
|
|
|
- OBJ_COMMIT (1)
|
|
|
|
- OBJ_TREE (2)
|
|
|
|
- OBJ_BLOB (3)
|
|
|
|
- OBJ_TAG (4)
|
|
|
|
- OBJ_OFS_DELTA (6)
|
|
|
|
- OBJ_REF_DELTA (7)
|
|
|
|
|
|
|
|
Type 5 is reserved for future expansion. Type 0 is invalid.
|
|
|
|
|
2020-12-29 23:43:35 +01:00
|
|
|
=== Size encoding
|
|
|
|
|
|
|
|
This document uses the following "size encoding" of non-negative
|
|
|
|
integers: From each byte, the seven least significant bits are
|
|
|
|
used to form the resulting integer. As long as the most significant
|
|
|
|
bit is 1, this process continues; the byte with MSB 0 provides the
|
|
|
|
last seven bits. The seven-bit chunks are concatenated. Later
|
|
|
|
values are more significant.
|
|
|
|
|
|
|
|
This size encoding should not be confused with the "offset encoding",
|
|
|
|
which is also used in this document.
|
|
|
|
|
2018-05-11 08:55:23 +02:00
|
|
|
=== Deltified representation
|
|
|
|
|
|
|
|
Conceptually there are only four object types: commit, tree, tag and
|
|
|
|
blob. However to save space, an object could be stored as a "delta" of
|
|
|
|
another "base" object. These representations are assigned new types
|
|
|
|
ofs-delta and ref-delta, which is only valid in a pack file.
|
|
|
|
|
|
|
|
Both ofs-delta and ref-delta store the "delta" to be applied to
|
|
|
|
another object (called 'base object') to reconstruct the object. The
|
2020-08-14 00:49:00 +02:00
|
|
|
difference between them is, ref-delta directly encodes base object
|
|
|
|
name. If the base object is in the same pack, ofs-delta encodes
|
2018-05-11 08:55:23 +02:00
|
|
|
the offset of the base object in the pack instead.
|
|
|
|
|
|
|
|
The base object could also be deltified if it's in the same pack.
|
|
|
|
Ref-delta can also refer to an object outside the pack (i.e. the
|
|
|
|
so-called "thin pack"). When stored on disk however, the pack should
|
|
|
|
be self contained to avoid cyclic dependency.
|
|
|
|
|
2020-12-29 23:43:35 +01:00
|
|
|
The delta data starts with the size of the base object and the
|
|
|
|
size of the object to be reconstructed. These sizes are
|
|
|
|
encoded using the size encoding from above. The remainder of
|
|
|
|
the delta data is a sequence of instructions to reconstruct the object
|
2018-05-11 08:55:23 +02:00
|
|
|
from the base object. If the base object is deltified, it must be
|
|
|
|
converted to canonical form first. Each instruction appends more and
|
|
|
|
more data to the target object until it's complete. There are two
|
|
|
|
supported instructions so far: one for copy a byte range from the
|
|
|
|
source object and one for inserting new data embedded in the
|
|
|
|
instruction itself.
|
|
|
|
|
|
|
|
Each instruction has variable length. Instruction type is determined
|
|
|
|
by the seventh bit of the first octet. The following diagrams follow
|
|
|
|
the convention in RFC 1951 (Deflate compressed data format).
|
|
|
|
|
|
|
|
==== Instruction to copy from base object
|
|
|
|
|
|
|
|
+----------+---------+---------+---------+---------+-------+-------+-------+
|
|
|
|
| 1xxxxxxx | offset1 | offset2 | offset3 | offset4 | size1 | size2 | size3 |
|
|
|
|
+----------+---------+---------+---------+---------+-------+-------+-------+
|
|
|
|
|
|
|
|
This is the instruction format to copy a byte range from the source
|
|
|
|
object. It encodes the offset to copy from and the number of bytes to
|
|
|
|
copy. Offset and size are in little-endian order.
|
|
|
|
|
|
|
|
All offset and size bytes are optional. This is to reduce the
|
|
|
|
instruction size when encoding small offsets or sizes. The first seven
|
|
|
|
bits in the first octet determines which of the next seven octets is
|
|
|
|
present. If bit zero is set, offset1 is present. If bit one is set
|
|
|
|
offset2 is present and so on.
|
|
|
|
|
|
|
|
Note that a more compact instruction does not change offset and size
|
|
|
|
encoding. For example, if only offset2 is omitted like below, offset3
|
|
|
|
still contains bits 16-23. It does not become offset2 and contains
|
|
|
|
bits 8-15 even if it's right next to offset1.
|
|
|
|
|
|
|
|
+----------+---------+---------+
|
|
|
|
| 10000101 | offset1 | offset3 |
|
|
|
|
+----------+---------+---------+
|
|
|
|
|
|
|
|
In its most compact form, this instruction only takes up one byte
|
|
|
|
(0x80) with both offset and size omitted, which will have default
|
|
|
|
values zero. There is another exception: size zero is automatically
|
|
|
|
converted to 0x10000.
|
|
|
|
|
|
|
|
==== Instruction to add new data
|
|
|
|
|
|
|
|
+----------+============+
|
|
|
|
| 0xxxxxxx | data |
|
|
|
|
+----------+============+
|
|
|
|
|
|
|
|
This is the instruction to construct target object without the base
|
|
|
|
object. The following data is appended to the target object. The first
|
|
|
|
seven bits of the first octet determines the size of data in
|
|
|
|
bytes. The size must be non-zero.
|
|
|
|
|
|
|
|
==== Reserved instruction
|
|
|
|
|
|
|
|
+----------+============
|
|
|
|
| 00000000 |
|
|
|
|
+----------+============
|
|
|
|
|
|
|
|
This is the instruction reserved for future expansion.
|
|
|
|
|
2012-10-16 19:24:16 +02:00
|
|
|
== Original (version 1) pack-*.idx files have the following format:
|
2006-04-07 11:07:40 +02:00
|
|
|
|
|
|
|
- The header consists of 256 4-byte network byte order
|
|
|
|
integers. N-th entry of this table records the number of
|
|
|
|
objects in the corresponding pack, the first byte of whose
|
2007-12-14 12:28:14 +01:00
|
|
|
object name is less than or equal to N. This is called the
|
2006-04-07 11:07:40 +02:00
|
|
|
'first-level fan-out' table.
|
|
|
|
|
2006-05-29 09:17:18 +02:00
|
|
|
- The header is followed by sorted 24-byte entries, one entry
|
2006-04-07 11:07:40 +02:00
|
|
|
per object in the pack. Each entry is:
|
|
|
|
|
|
|
|
4-byte network byte order integer, recording where the
|
|
|
|
object is stored in the packfile as the offset from the
|
|
|
|
beginning.
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
one object name of the appropriate size.
|
2006-04-07 11:07:40 +02:00
|
|
|
|
|
|
|
- The file is concluded with a trailer:
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
A copy of the pack checksum at the end of the corresponding
|
|
|
|
packfile.
|
2006-04-07 11:07:40 +02:00
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
Index checksum of all of the above.
|
2006-04-07 11:07:40 +02:00
|
|
|
|
|
|
|
Pack Idx file:
|
|
|
|
|
2007-12-14 12:28:14 +01:00
|
|
|
-- +--------------------------------+
|
|
|
|
fanout | fanout[0] = 2 (for example) |-.
|
|
|
|
table +--------------------------------+ |
|
2006-04-07 11:07:40 +02:00
|
|
|
| fanout[1] | |
|
|
|
|
+--------------------------------+ |
|
|
|
|
| fanout[2] | |
|
|
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
2007-12-14 12:28:14 +01:00
|
|
|
| fanout[255] = total objects |---.
|
|
|
|
-- +--------------------------------+ | |
|
|
|
|
main | offset | | |
|
|
|
|
index | object name 00XXXXXXXXXXXXXXXX | | |
|
|
|
|
table +--------------------------------+ | |
|
|
|
|
| offset | | |
|
|
|
|
| object name 00XXXXXXXXXXXXXXXX | | |
|
|
|
|
+--------------------------------+<+ |
|
|
|
|
.-| offset | |
|
|
|
|
| | object name 01XXXXXXXXXXXXXXXX | |
|
|
|
|
| +--------------------------------+ |
|
|
|
|
| | offset | |
|
|
|
|
| | object name 01XXXXXXXXXXXXXXXX | |
|
|
|
|
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|
|
|
|
| | offset | |
|
|
|
|
| | object name FFXXXXXXXXXXXXXXXX | |
|
|
|
|
--| +--------------------------------+<--+
|
2006-04-07 11:07:40 +02:00
|
|
|
trailer | | packfile checksum |
|
|
|
|
| +--------------------------------+
|
|
|
|
| | idxfile checksum |
|
|
|
|
| +--------------------------------+
|
2007-06-07 09:04:01 +02:00
|
|
|
.-------.
|
2006-04-07 11:07:40 +02:00
|
|
|
|
|
|
|
|
Pack file entry: <+
|
|
|
|
|
|
|
|
packed object header:
|
2007-03-21 19:43:37 +01:00
|
|
|
1-byte size extension bit (MSB)
|
|
|
|
type (next 3 bit)
|
2007-06-07 09:04:01 +02:00
|
|
|
size0 (lower 4-bit)
|
2006-04-07 11:07:40 +02:00
|
|
|
n-byte sizeN (as long as MSB is set, each 7-bit)
|
|
|
|
size0..sizeN form 4+7+7+..+7 bit integer, size0
|
2007-03-21 19:43:37 +01:00
|
|
|
is the least significant part, and sizeN is the
|
|
|
|
most significant part.
|
2006-04-07 11:07:40 +02:00
|
|
|
packed object data:
|
|
|
|
If it is not DELTA, then deflated bytes (the size above
|
|
|
|
is the size before compression).
|
2008-04-06 22:51:49 +02:00
|
|
|
If it is REF_DELTA, then
|
2020-08-14 00:49:00 +02:00
|
|
|
base object name (the size above is the
|
2007-06-07 09:04:01 +02:00
|
|
|
size of the delta data that follows).
|
2006-04-07 11:07:40 +02:00
|
|
|
delta data, deflated.
|
2008-04-06 22:51:49 +02:00
|
|
|
If it is OFS_DELTA, then
|
|
|
|
n-byte offset (see below) interpreted as a negative
|
|
|
|
offset from the type-byte of the header of the
|
|
|
|
ofs-delta entry (the size above is the size of
|
|
|
|
the delta data that follows).
|
|
|
|
delta data, deflated.
|
|
|
|
|
|
|
|
offset encoding:
|
|
|
|
n bytes with MSB set in all but the last one.
|
|
|
|
The offset is then the number constructed by
|
|
|
|
concatenating the lower 7 bit of each byte, and
|
|
|
|
for n >= 2 adding 2^7 + 2^14 + ... + 2^(7*(n-1))
|
|
|
|
to the result.
|
|
|
|
|
2007-12-14 12:28:14 +01:00
|
|
|
|
|
|
|
|
2012-10-16 19:24:16 +02:00
|
|
|
== Version 2 pack-*.idx files support packs larger than 4 GiB, and
|
|
|
|
have some other reorganizations. They have the format:
|
2007-12-14 12:28:14 +01:00
|
|
|
|
|
|
|
- A 4-byte magic number '\377tOc' which is an unreasonable
|
|
|
|
fanout[0] value.
|
|
|
|
|
|
|
|
- A 4-byte version number (= 2)
|
|
|
|
|
|
|
|
- A 256-entry fan-out table just like v1.
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
- A table of sorted object names. These are packed together
|
|
|
|
without offset values to reduce the cache footprint of the
|
|
|
|
binary search for a specific object name.
|
2007-12-14 12:28:14 +01:00
|
|
|
|
|
|
|
- A table of 4-byte CRC32 values of the packed object data.
|
|
|
|
This is new in v2 so compressed data can be copied directly
|
2008-01-07 22:43:27 +01:00
|
|
|
from pack to pack during repacking without undetected
|
2007-12-14 12:28:14 +01:00
|
|
|
data corruption.
|
|
|
|
|
|
|
|
- A table of 4-byte offset values (in network byte order).
|
|
|
|
These are usually 31-bit pack file offsets, but large
|
|
|
|
offsets are encoded as an index into the next table with
|
|
|
|
the msbit set.
|
|
|
|
|
|
|
|
- A table of 8-byte offset entries (empty for pack files less
|
|
|
|
than 2 GiB). Pack files are organized with heavily used
|
|
|
|
objects toward the front, so most object references should
|
|
|
|
not need to refer to this table.
|
|
|
|
|
|
|
|
- The same trailer as a v1 pack file:
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
A copy of the pack checksum at the end of
|
2007-12-14 12:28:14 +01:00
|
|
|
corresponding packfile.
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
Index checksum of all of the above.
|
2018-07-12 21:39:19 +02:00
|
|
|
|
packfile: prepare for the existence of '*.rev' files
Specify the format of the on-disk reverse index 'pack-*.rev' file, as
well as prepare the code for the existence of such files.
The reverse index maps from pack relative positions (i.e., an index into
the array of object which is sorted by their offsets within the
packfile) to their position within the 'pack-*.idx' file. Today, this is
done by building up a list of (off_t, uint32_t) tuples for each object
(the off_t corresponding to that object's offset, and the uint32_t
corresponding to its position in the index). To convert between pack and
index position quickly, this array of tuples is radix sorted based on
its offset.
This has two major drawbacks:
First, the in-memory cost scales linearly with the number of objects in
a pack. Each 'struct revindex_entry' is sizeof(off_t) +
sizeof(uint32_t) + padding bytes for a total of 16.
To observe this, force Git to load the reverse index by, for e.g.,
running 'git cat-file --batch-check="%(objectsize:disk)"'. When asking
for a single object in a fresh clone of the kernel, Git needs to
allocate 120+ MB of memory in order to hold the reverse index in memory.
Second, the cost to sort also scales with the size of the pack.
Luckily, this is a linear function since 'load_pack_revindex()' uses a
radix sort, but this cost still must be paid once per pack per process.
As an example, it takes ~60x longer to print the _size_ of an object as
it does to print that entire object's _contents_:
Benchmark #1: git.compile cat-file --batch <obj
Time (mean ± σ): 3.4 ms ± 0.1 ms [User: 3.3 ms, System: 2.1 ms]
Range (min … max): 3.2 ms … 3.7 ms 726 runs
Benchmark #2: git.compile cat-file --batch-check="%(objectsize:disk)" <obj
Time (mean ± σ): 210.3 ms ± 8.9 ms [User: 188.2 ms, System: 23.2 ms]
Range (min … max): 193.7 ms … 224.4 ms 13 runs
Instead, avoid computing and sorting the revindex once per process by
writing it to a file when the pack itself is generated.
The format is relatively straightforward. It contains an array of
uint32_t's, the length of which is equal to the number of objects in the
pack. The ith entry in this table contains the index position of the
ith object in the pack, where "ith object in the pack" is determined by
pack offset.
One thing that the on-disk format does _not_ contain is the full (up to)
eight-byte offset corresponding to each object. This is something that
the in-memory revindex contains (it stores an off_t in 'struct
revindex_entry' along with the same uint32_t that the on-disk format
has). Omit it in the on-disk format, since knowing the index position
for some object is sufficient to get a constant-time lookup in the
pack-*.idx file to ask for an object's offset within the pack.
This trades off between the on-disk size of the 'pack-*.rev' file for
runtime to chase down the offset for some object. Even though the lookup
is constant time, the constant is heavier, since it can potentially
involve two pointer walks in v2 indexes (one to access the 4-byte offset
table, and potentially a second to access the double wide offset table).
Consider trying to map an object's pack offset to a relative position
within that pack. In a cold-cache scenario, more page faults occur while
switching between binary searching through the reverse index and
searching through the *.idx file for an object's offset. Sure enough,
with a cold cache (writing '3' into '/proc/sys/vm/drop_caches' after
'sync'ing), printing out the entire object's contents is still
marginally faster than printing its size:
Benchmark #1: git.compile cat-file --batch-check="%(objectsize:disk)" <obj >/dev/null
Time (mean ± σ): 22.6 ms ± 0.5 ms [User: 2.4 ms, System: 7.9 ms]
Range (min … max): 21.4 ms … 23.5 ms 41 runs
Benchmark #2: git.compile cat-file --batch <obj >/dev/null
Time (mean ± σ): 17.2 ms ± 0.7 ms [User: 2.8 ms, System: 5.5 ms]
Range (min … max): 15.6 ms … 18.2 ms 45 runs
(Numbers taken in the kernel after cheating and using the next patch to
generate a reverse index). There are a couple of approaches to improve
cold cache performance not pursued here:
- We could include the object offsets in the reverse index format.
Predictably, this does result in fewer page faults, but it triples
the size of the file, while simultaneously duplicating a ton of data
already available in the .idx file. (This was the original way I
implemented the format, and it did show
`--batch-check='%(objectsize:disk)'` winning out against `--batch`.)
On the other hand, this increase in size also results in a large
block-cache footprint, which could potentially hurt other workloads.
- We could store the mapping from pack to index position in more
cache-friendly way, like constructing a binary search tree from the
table and writing the values in breadth-first order. This would
result in much better locality, but the price you pay is trading
O(1) lookup in 'pack_pos_to_index()' for an O(log n) one (since you
can no longer directly index the table).
So, neither of these approaches are taken here. (Thankfully, the format
is versioned, so we are free to pursue these in the future.) But, cold
cache performance likely isn't interesting outside of one-off cases like
asking for the size of an object directly. In real-world usage, Git is
often performing many operations in the revindex (i.e., asking about
many objects rather than a single one).
The trade-off is worth it, since we will avoid the vast majority of the
cost of generating the revindex that the extra pointer chase will look
like noise in the following patch's benchmarks.
This patch describes the format and prepares callers (like in
pack-revindex.c) to be able to read *.rev files once they exist. An
implementation of the writer will appear in the next patch, and callers
will gradually begin to start using the writer in the patches that
follow after that.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-26 00:37:14 +01:00
|
|
|
== pack-*.rev files have the format:
|
|
|
|
|
|
|
|
- A 4-byte magic number '0x52494458' ('RIDX').
|
|
|
|
|
|
|
|
- A 4-byte version identifier (= 1).
|
|
|
|
|
|
|
|
- A 4-byte hash function identifier (= 1 for SHA-1, 2 for SHA-256).
|
|
|
|
|
|
|
|
- A table of index positions (one per packed object, num_objects in
|
|
|
|
total, each a 4-byte unsigned integer in network order), sorted by
|
|
|
|
their corresponding offsets in the packfile.
|
|
|
|
|
|
|
|
- A trailer, containing a:
|
|
|
|
|
|
|
|
checksum of the corresponding packfile, and
|
|
|
|
|
|
|
|
a checksum of all of the above.
|
|
|
|
|
|
|
|
All 4-byte numbers are in network order.
|
|
|
|
|
2022-05-21 01:17:35 +02:00
|
|
|
== pack-*.mtimes files have the format:
|
|
|
|
|
|
|
|
All 4-byte numbers are in network byte order.
|
|
|
|
|
|
|
|
- A 4-byte magic number '0x4d544d45' ('MTME').
|
|
|
|
|
|
|
|
- A 4-byte version identifier (= 1).
|
|
|
|
|
|
|
|
- A 4-byte hash function identifier (= 1 for SHA-1, 2 for SHA-256).
|
|
|
|
|
|
|
|
- A table of 4-byte unsigned integers. The ith value is the
|
|
|
|
modification time (mtime) of the ith object in the corresponding
|
|
|
|
pack by lexicographic (index) order. The mtimes count standard
|
|
|
|
epoch seconds.
|
|
|
|
|
|
|
|
- A trailer, containing a checksum of the corresponding packfile,
|
|
|
|
and a checksum of all of the above (each having length according
|
|
|
|
to the specified hash function).
|
|
|
|
|
2018-07-12 21:39:19 +02:00
|
|
|
== multi-pack-index (MIDX) files have the following format:
|
|
|
|
|
|
|
|
The multi-pack-index files refer to multiple pack-files and loose objects.
|
|
|
|
|
|
|
|
In order to allow extensions that add extra data to the MIDX, we organize
|
|
|
|
the body into "chunks" and provide a lookup table at the beginning of the
|
|
|
|
body. The header includes certain length values, such as the number of packs,
|
|
|
|
the number of base MIDX files, hash lengths and types.
|
|
|
|
|
|
|
|
All 4-byte numbers are in network order.
|
|
|
|
|
|
|
|
HEADER:
|
|
|
|
|
|
|
|
4-byte signature:
|
|
|
|
The signature is: {'M', 'I', 'D', 'X'}
|
|
|
|
|
|
|
|
1-byte version number:
|
|
|
|
Git only writes or recognizes version 1.
|
|
|
|
|
|
|
|
1-byte Object Id Version
|
2020-08-17 16:04:48 +02:00
|
|
|
We infer the length of object IDs (OIDs) from this value:
|
|
|
|
1 => SHA-1
|
|
|
|
2 => SHA-256
|
|
|
|
If the hash type does not match the repository's hash algorithm,
|
|
|
|
the multi-pack-index file should be ignored with a warning
|
|
|
|
presented to the user.
|
2018-07-12 21:39:19 +02:00
|
|
|
|
|
|
|
1-byte number of "chunks"
|
|
|
|
|
|
|
|
1-byte number of base multi-pack-index files:
|
|
|
|
This value is currently always zero.
|
|
|
|
|
|
|
|
4-byte number of pack files
|
|
|
|
|
|
|
|
CHUNK LOOKUP:
|
|
|
|
|
|
|
|
(C + 1) * 12 bytes providing the chunk offsets:
|
|
|
|
First 4 bytes describe chunk id. Value 0 is a terminating label.
|
|
|
|
Other 8 bytes provide offset in current file for chunk to start.
|
|
|
|
(Chunks are provided in file-order, so you can infer the length
|
|
|
|
using the next chunk position if necessary.)
|
|
|
|
|
2021-02-18 15:07:39 +01:00
|
|
|
The CHUNK LOOKUP matches the table of contents from
|
2022-08-04 18:28:39 +02:00
|
|
|
the chunk-based file format, see linkgit:gitformat-chunk[5].
|
2021-02-18 15:07:39 +01:00
|
|
|
|
2018-07-12 21:39:19 +02:00
|
|
|
The remaining data in the body is described one chunk at a time, and
|
|
|
|
these chunks may be given in any order. Chunks are required unless
|
|
|
|
otherwise specified.
|
|
|
|
|
|
|
|
CHUNK DATA:
|
|
|
|
|
2018-07-12 21:39:27 +02:00
|
|
|
Packfile Names (ID: {'P', 'N', 'A', 'M'})
|
|
|
|
Stores the packfile names as concatenated, null-terminated strings.
|
|
|
|
Packfiles must be listed in lexicographic order for fast lookups by
|
|
|
|
name. This is the only chunk not guaranteed to be a multiple of four
|
|
|
|
bytes in length, so should be the last chunk for alignment reasons.
|
|
|
|
|
2018-07-12 21:39:31 +02:00
|
|
|
OID Fanout (ID: {'O', 'I', 'D', 'F'})
|
|
|
|
The ith entry, F[i], stores the number of OIDs with first
|
|
|
|
byte at most i. Thus F[255] stores the total
|
|
|
|
number of objects.
|
|
|
|
|
2018-07-12 21:39:30 +02:00
|
|
|
OID Lookup (ID: {'O', 'I', 'D', 'L'})
|
|
|
|
The OIDs for all objects in the MIDX are stored in lexicographic
|
|
|
|
order in this chunk.
|
|
|
|
|
2018-07-12 21:39:32 +02:00
|
|
|
Object Offsets (ID: {'O', 'O', 'F', 'F'})
|
|
|
|
Stores two 4-byte values for every object.
|
|
|
|
1: The pack-int-id for the pack storing this object.
|
|
|
|
2: The offset within the pack.
|
2020-02-07 23:16:40 +01:00
|
|
|
If all offsets are less than 2^32, then the large offset chunk
|
2018-07-12 21:39:32 +02:00
|
|
|
will not exist and offsets are stored as in IDX v1.
|
|
|
|
If there is at least one offset value larger than 2^32-1, then
|
2020-02-07 23:16:40 +01:00
|
|
|
the large offset chunk must exist, and offsets larger than
|
|
|
|
2^31-1 must be stored in it instead. If the large offset chunk
|
2018-07-12 21:39:32 +02:00
|
|
|
exists and the 31st bit is on, then removing that bit reveals
|
|
|
|
the row in the large offsets containing the 8-byte offset of
|
|
|
|
this object.
|
|
|
|
|
|
|
|
[Optional] Object Large Offsets (ID: {'L', 'O', 'F', 'F'})
|
|
|
|
8-byte offsets into large packfiles.
|
2018-07-12 21:39:19 +02:00
|
|
|
|
midx.c: make changing the preferred pack safe
The previous patch demonstrates a bug where a MIDX's auxiliary object
order can become out of sync with a MIDX bitmap.
This is because of two confounding factors:
- First, the object order is stored in a file which is named according
to the multi-pack index's checksum, and the MIDX does not store the
object order. This means that the object order can change without
altering the checksum.
- But the .rev file is moved into place with finalize_object_file(),
which link(2)'s the file into place instead of renaming it. For us,
that means that a modified .rev file will not be moved into place if
MIDX's checksum was unchanged.
This fix is to force the MIDX's checksum to change when the preferred
pack changes but the set of packs contained in the MIDX does not. In
other words, when the object order changes, the MIDX's checksum needs to
change with it (regardless of whether the MIDX is tracking the same or
different packs).
This prevents a race whereby changing the object order (but not the
packs themselves) enables a reader to see the new .rev file with the old
MIDX, or similarly seeing the new bitmap with the old object order.
But why can't we just stop hardlinking the .rev into place instead
adding additional data to the MIDX? Suppose that's what we did. Then
when we go to generate the new bitmap, we'll load the old MIDX bitmap,
along with the MIDX that it references. That's fine, since the new MIDX
isn't moved into place until after the new bitmap is generated. But the
new object order *has* been moved into place. So we'll read the old
bitmaps in the new order when generating the new bitmap file, meaning
that without this secondary change, bitmap generation itself would
become a victim of the race described here.
This can all be prevented by forcing the MIDX's checksum to change when
the object order does. By embedding the entire object order into the
MIDX, we do just that. That is, the MIDX's checksum will change in
response to any perturbation of the underlying object order. In t5326,
this will cause the MIDX's checksum to update (even without changing the
set of packs in the MIDX), preventing the stale read problem.
Note that this makes it safe to continue to link(2) the MIDX .rev file
into place, since it is now impossible to have a .rev file that is
out-of-sync with the MIDX whose checksum it references. (But we will do
away with MIDX .rev files later in this series anyway, so this is
somewhat of a moot point).
In theory, it is possible to store a "fingerprint" of the full object
order here, so long as that fingerprint changes at least as often as the
full object order does. Some possibilities here include storing the
identity of the preferred pack, along with the mtimes of the
non-preferred packs in a consistent order. But storing a limited part of
the information makes it difficult to reason about whether or not there
are gaps between the two that would cause us to get bitten by this bug
again.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Reviewed-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-25 23:41:03 +01:00
|
|
|
[Optional] Bitmap pack order (ID: {'R', 'I', 'D', 'X'})
|
|
|
|
A list of MIDX positions (one per object in the MIDX, num_objects in
|
|
|
|
total, each a 4-byte unsigned integer in network byte order), sorted
|
|
|
|
according to their relative bitmap/pseudo-pack positions.
|
|
|
|
|
2018-07-12 21:39:19 +02:00
|
|
|
TRAILER:
|
|
|
|
|
2020-08-14 00:49:00 +02:00
|
|
|
Index checksum of the above contents.
|
2021-03-30 17:04:23 +02:00
|
|
|
|
|
|
|
== multi-pack-index reverse indexes
|
|
|
|
|
|
|
|
Similar to the pack-based reverse index, the multi-pack index can also
|
|
|
|
be used to generate a reverse index.
|
|
|
|
|
|
|
|
Instead of mapping between offset, pack-, and index position, this
|
|
|
|
reverse index maps between an object's position within the MIDX, and
|
|
|
|
that object's position within a pseudo-pack that the MIDX describes
|
|
|
|
(i.e., the ith entry of the multi-pack reverse index holds the MIDX
|
|
|
|
position of ith object in pseudo-pack order).
|
|
|
|
|
|
|
|
To clarify the difference between these orderings, consider a multi-pack
|
|
|
|
reachability bitmap (which does not yet exist, but is what we are
|
|
|
|
building towards here). Each bit needs to correspond to an object in the
|
|
|
|
MIDX, and so we need an efficient mapping from bit position to MIDX
|
|
|
|
position.
|
|
|
|
|
|
|
|
One solution is to let bits occupy the same position in the oid-sorted
|
|
|
|
index stored by the MIDX. But because oids are effectively random, their
|
|
|
|
resulting reachability bitmaps would have no locality, and thus compress
|
|
|
|
poorly. (This is the reason that single-pack bitmaps use the pack
|
|
|
|
ordering, and not the .idx ordering, for the same purpose.)
|
|
|
|
|
|
|
|
So we'd like to define an ordering for the whole MIDX based around
|
|
|
|
pack ordering, which has far better locality (and thus compresses more
|
|
|
|
efficiently). We can think of a pseudo-pack created by the concatenation
|
|
|
|
of all of the packs in the MIDX. E.g., if we had a MIDX with three packs
|
|
|
|
(a, b, c), with 10, 15, and 20 objects respectively, we can imagine an
|
|
|
|
ordering of the objects like:
|
|
|
|
|
|
|
|
|a,0|a,1|...|a,9|b,0|b,1|...|b,14|c,0|c,1|...|c,19|
|
|
|
|
|
|
|
|
where the ordering of the packs is defined by the MIDX's pack list,
|
|
|
|
and then the ordering of objects within each pack is the same as the
|
|
|
|
order in the actual packfile.
|
|
|
|
|
|
|
|
Given the list of packs and their counts of objects, you can
|
|
|
|
naïvely reconstruct that pseudo-pack ordering (e.g., the object at
|
|
|
|
position 27 must be (c,1) because packs "a" and "b" consumed 25 of the
|
|
|
|
slots). But there's a catch. Objects may be duplicated between packs, in
|
|
|
|
which case the MIDX only stores one pointer to the object (and thus we'd
|
|
|
|
want only one slot in the bitmap).
|
|
|
|
|
|
|
|
Callers could handle duplicates themselves by reading objects in order
|
|
|
|
of their bit-position, but that's linear in the number of objects, and
|
|
|
|
much too expensive for ordinary bitmap lookups. Building a reverse index
|
|
|
|
solves this, since it is the logical inverse of the index, and that
|
|
|
|
index has already removed duplicates. But, building a reverse index on
|
|
|
|
the fly can be expensive. Since we already have an on-disk format for
|
|
|
|
pack-based reverse indexes, let's reuse it for the MIDX's pseudo-pack,
|
|
|
|
too.
|
|
|
|
|
|
|
|
Objects from the MIDX are ordered as follows to string together the
|
|
|
|
pseudo-pack. Let `pack(o)` return the pack from which `o` was selected
|
|
|
|
by the MIDX, and define an ordering of packs based on their numeric ID
|
|
|
|
(as stored by the MIDX). Let `offset(o)` return the object offset of `o`
|
|
|
|
within `pack(o)`. Then, compare `o1` and `o2` as follows:
|
|
|
|
|
|
|
|
- If one of `pack(o1)` and `pack(o2)` is preferred and the other
|
|
|
|
is not, then the preferred one sorts first.
|
|
|
|
+
|
|
|
|
(This is a detail that allows the MIDX bitmap to determine which
|
|
|
|
pack should be used by the pack-reuse mechanism, since it can ask
|
|
|
|
the MIDX for the pack containing the object at bit position 0).
|
|
|
|
|
|
|
|
- If `pack(o1) ≠ pack(o2)`, then sort the two objects in descending
|
|
|
|
order based on the pack ID.
|
|
|
|
|
|
|
|
- Otherwise, `pack(o1) = pack(o2)`, and the objects are sorted in
|
|
|
|
pack-order (i.e., `o1` sorts ahead of `o2` exactly when `offset(o1)
|
|
|
|
< offset(o2)`).
|
|
|
|
|
|
|
|
In short, a MIDX's pseudo-pack is the de-duplicated concatenation of
|
|
|
|
objects in packs stored by the MIDX, laid out in pack order, and the
|
|
|
|
packs arranged in MIDX order (with the preferred pack coming first).
|
|
|
|
|
midx.c: make changing the preferred pack safe
The previous patch demonstrates a bug where a MIDX's auxiliary object
order can become out of sync with a MIDX bitmap.
This is because of two confounding factors:
- First, the object order is stored in a file which is named according
to the multi-pack index's checksum, and the MIDX does not store the
object order. This means that the object order can change without
altering the checksum.
- But the .rev file is moved into place with finalize_object_file(),
which link(2)'s the file into place instead of renaming it. For us,
that means that a modified .rev file will not be moved into place if
MIDX's checksum was unchanged.
This fix is to force the MIDX's checksum to change when the preferred
pack changes but the set of packs contained in the MIDX does not. In
other words, when the object order changes, the MIDX's checksum needs to
change with it (regardless of whether the MIDX is tracking the same or
different packs).
This prevents a race whereby changing the object order (but not the
packs themselves) enables a reader to see the new .rev file with the old
MIDX, or similarly seeing the new bitmap with the old object order.
But why can't we just stop hardlinking the .rev into place instead
adding additional data to the MIDX? Suppose that's what we did. Then
when we go to generate the new bitmap, we'll load the old MIDX bitmap,
along with the MIDX that it references. That's fine, since the new MIDX
isn't moved into place until after the new bitmap is generated. But the
new object order *has* been moved into place. So we'll read the old
bitmaps in the new order when generating the new bitmap file, meaning
that without this secondary change, bitmap generation itself would
become a victim of the race described here.
This can all be prevented by forcing the MIDX's checksum to change when
the object order does. By embedding the entire object order into the
MIDX, we do just that. That is, the MIDX's checksum will change in
response to any perturbation of the underlying object order. In t5326,
this will cause the MIDX's checksum to update (even without changing the
set of packs in the MIDX), preventing the stale read problem.
Note that this makes it safe to continue to link(2) the MIDX .rev file
into place, since it is now impossible to have a .rev file that is
out-of-sync with the MIDX whose checksum it references. (But we will do
away with MIDX .rev files later in this series anyway, so this is
somewhat of a moot point).
In theory, it is possible to store a "fingerprint" of the full object
order here, so long as that fingerprint changes at least as often as the
full object order does. Some possibilities here include storing the
identity of the preferred pack, along with the mtimes of the
non-preferred packs in a consistent order. But storing a limited part of
the information makes it difficult to reason about whether or not there
are gaps between the two that would cause us to get bitten by this bug
again.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Reviewed-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-25 23:41:03 +01:00
|
|
|
The MIDX's reverse index is stored in the optional 'RIDX' chunk within
|
|
|
|
the MIDX itself.
|
2022-08-04 18:28:39 +02:00
|
|
|
|
|
|
|
GIT
|
|
|
|
---
|
|
|
|
Part of the linkgit:git[1] suite
|