git-commit-vandalism/diff.c

2888 lines
70 KiB
C
Raw Normal View History

/*
* Copyright (C) 2005 Junio C Hamano
*/
#include <sys/types.h>
#include <sys/wait.h>
#include <signal.h>
#include "cache.h"
#include "quote.h"
#include "diff.h"
#include "diffcore.h"
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
#include "delta.h"
#include "xdiff-interface.h"
#include "color.h"
Avoid accessing a slow working copy during diffcore operations. The Cygwin folks have done a fine job at creating a POSIX layer on Windows That Just Works(tm). However it comes with a penalty; accessing files in the working tree by way of stat/open/mmap can be slower for diffcore than inflating the data from a blob which is stored in a packfile. This performance problem is especially an issue in merge-recursive when dealing with nearly 7000 added files, as we are loading each file's content from the working directory to perform rename detection. I have literally seen (and sadly watched) paint dry in less time than it takes for merge-recursive to finish such a merge. On the other hand this very same merge runs very fast on Solaris. If Git is compiled with NO_FAST_WORKING_DIRECTORY set then we will avoid looking at the working directory when the blob in question is available within a packfile and the caller doesn't need the data unpacked into a temporary file. We don't use loose objects as they have the same open/mmap/close costs as the working directory file access, but have the additional CPU overhead of needing to inflate the content before use. So it is still faster to use the working tree file over the loose object. If the caller needs the file data unpacked into a temporary file its likely because they are going to call an external diff program, passing the file as a parameter. In this case reusing the working tree file will be faster as we don't need to inflate the data and write it out to a temporary file. The NO_FAST_WORKING_DIRECTORY feature is enabled by default on Cygwin, as that is the platform which currently appears to benefit the most from this option. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-12-14 12:15:57 +01:00
#ifdef NO_FAST_WORKING_DIRECTORY
#define FAST_WORKING_DIRECTORY 0
#else
#define FAST_WORKING_DIRECTORY 1
#endif
static int use_size_cache;
static int diff_detect_rename_default;
static int diff_rename_limit_default = -1;
static int diff_use_color_default;
static char diff_colors[][COLOR_MAXLEN] = {
"\033[m", /* reset */
"", /* PLAIN (normal) */
"\033[1m", /* METAINFO (bold) */
"\033[36m", /* FRAGINFO (cyan) */
"\033[31m", /* OLD (red) */
"\033[32m", /* NEW (green) */
"\033[33m", /* COMMIT (yellow) */
"\033[41m", /* WHITESPACE (red background) */
};
static int parse_diff_color_slot(const char *var, int ofs)
{
if (!strcasecmp(var+ofs, "plain"))
return DIFF_PLAIN;
if (!strcasecmp(var+ofs, "meta"))
return DIFF_METAINFO;
if (!strcasecmp(var+ofs, "frag"))
return DIFF_FRAGINFO;
if (!strcasecmp(var+ofs, "old"))
return DIFF_FILE_OLD;
if (!strcasecmp(var+ofs, "new"))
return DIFF_FILE_NEW;
if (!strcasecmp(var+ofs, "commit"))
return DIFF_COMMIT;
if (!strcasecmp(var+ofs, "whitespace"))
return DIFF_WHITESPACE;
die("bad config variable '%s'", var);
}
/*
* These are to give UI layer defaults.
* The core-level commands such as git-diff-files should
* never be affected by the setting of diff.renames
* the user happens to have in the configuration file.
*/
int git_diff_ui_config(const char *var, const char *value)
{
if (!strcmp(var, "diff.renamelimit")) {
diff_rename_limit_default = git_config_int(var, value);
return 0;
}
if (!strcmp(var, "diff.color") || !strcmp(var, "color.diff")) {
diff_use_color_default = git_config_colorbool(var, value);
return 0;
}
if (!strcmp(var, "diff.renames")) {
if (!value)
diff_detect_rename_default = DIFF_DETECT_RENAME;
else if (!strcasecmp(value, "copies") ||
!strcasecmp(value, "copy"))
diff_detect_rename_default = DIFF_DETECT_COPY;
else if (git_config_bool(var,value))
diff_detect_rename_default = DIFF_DETECT_RENAME;
return 0;
}
if (!strncmp(var, "diff.color.", 11) || !strncmp(var, "color.diff.", 11)) {
int slot = parse_diff_color_slot(var, 11);
color_parse(value, var, diff_colors[slot]);
return 0;
}
return git_default_config(var, value);
}
static char *quote_one(const char *str)
{
int needlen;
char *xp;
if (!str)
return NULL;
needlen = quote_c_style(str, NULL, NULL, 0);
if (!needlen)
return xstrdup(str);
xp = xmalloc(needlen + 1);
quote_c_style(str, xp, NULL, 0);
return xp;
}
static char *quote_two(const char *one, const char *two)
{
int need_one = quote_c_style(one, NULL, NULL, 1);
int need_two = quote_c_style(two, NULL, NULL, 1);
char *xp;
if (need_one + need_two) {
if (!need_one) need_one = strlen(one);
if (!need_two) need_one = strlen(two);
xp = xmalloc(need_one + need_two + 3);
xp[0] = '"';
quote_c_style(one, xp + 1, NULL, 1);
quote_c_style(two, xp + need_one + 1, NULL, 1);
strcpy(xp + need_one + need_two + 1, "\"");
return xp;
}
need_one = strlen(one);
need_two = strlen(two);
xp = xmalloc(need_one + need_two + 1);
strcpy(xp, one);
strcpy(xp + need_one, two);
return xp;
}
static const char *external_diff(void)
{
static const char *external_diff_cmd = NULL;
static int done_preparing = 0;
if (done_preparing)
return external_diff_cmd;
external_diff_cmd = getenv("GIT_EXTERNAL_DIFF");
done_preparing = 1;
return external_diff_cmd;
}
#define TEMPFILE_PATH_LEN 50
static struct diff_tempfile {
const char *name; /* filename external diff should read from */
char hex[41];
char mode[10];
char tmp_path[TEMPFILE_PATH_LEN];
} diff_temp[2];
static int count_lines(const char *data, int size)
{
int count, ch, completely_empty = 1, nl_just_seen = 0;
count = 0;
while (0 < size--) {
ch = *data++;
if (ch == '\n') {
count++;
nl_just_seen = 1;
completely_empty = 0;
}
else {
nl_just_seen = 0;
completely_empty = 0;
}
}
if (completely_empty)
return 0;
if (!nl_just_seen)
count++; /* no trailing newline */
return count;
}
static void print_line_count(int count)
{
switch (count) {
case 0:
printf("0,0");
break;
case 1:
printf("1");
break;
default:
printf("1,%d", count);
break;
}
}
static void copy_file(int prefix, const char *data, int size)
{
int ch, nl_just_seen = 1;
while (0 < size--) {
ch = *data++;
if (nl_just_seen)
putchar(prefix);
putchar(ch);
if (ch == '\n')
nl_just_seen = 1;
else
nl_just_seen = 0;
}
if (!nl_just_seen)
printf("\n\\ No newline at end of file\n");
}
static void emit_rewrite_diff(const char *name_a,
const char *name_b,
struct diff_filespec *one,
struct diff_filespec *two)
{
int lc_a, lc_b;
diff_populate_filespec(one, 0);
diff_populate_filespec(two, 0);
lc_a = count_lines(one->data, one->size);
lc_b = count_lines(two->data, two->size);
printf("--- a/%s\n+++ b/%s\n@@ -", name_a, name_b);
print_line_count(lc_a);
printf(" +");
print_line_count(lc_b);
printf(" @@\n");
if (lc_a)
copy_file('-', one->data, one->size);
if (lc_b)
copy_file('+', two->data, two->size);
}
static int fill_mmfile(mmfile_t *mf, struct diff_filespec *one)
{
if (!DIFF_FILE_VALID(one)) {
mf->ptr = (char *)""; /* does not matter */
mf->size = 0;
return 0;
}
else if (diff_populate_filespec(one, 0))
return -1;
mf->ptr = one->data;
mf->size = one->size;
return 0;
}
struct diff_words_buffer {
mmfile_t text;
long alloc;
long current; /* output pointer */
int suppressed_newline;
};
static void diff_words_append(char *line, unsigned long len,
struct diff_words_buffer *buffer)
{
if (buffer->text.size + len > buffer->alloc) {
buffer->alloc = (buffer->text.size + len) * 3 / 2;
buffer->text.ptr = xrealloc(buffer->text.ptr, buffer->alloc);
}
line++;
len--;
memcpy(buffer->text.ptr + buffer->text.size, line, len);
buffer->text.size += len;
}
struct diff_words_data {
struct xdiff_emit_state xm;
struct diff_words_buffer minus, plus;
};
static void print_word(struct diff_words_buffer *buffer, int len, int color,
int suppress_newline)
{
const char *ptr;
int eol = 0;
if (len == 0)
return;
ptr = buffer->text.ptr + buffer->current;
buffer->current += len;
if (ptr[len - 1] == '\n') {
eol = 1;
len--;
}
fputs(diff_get_color(1, color), stdout);
fwrite(ptr, len, 1, stdout);
fputs(diff_get_color(1, DIFF_RESET), stdout);
if (eol) {
if (suppress_newline)
buffer->suppressed_newline = 1;
else
putchar('\n');
}
}
static void fn_out_diff_words_aux(void *priv, char *line, unsigned long len)
{
struct diff_words_data *diff_words = priv;
if (diff_words->minus.suppressed_newline) {
if (line[0] != '+')
putchar('\n');
diff_words->minus.suppressed_newline = 0;
}
len--;
switch (line[0]) {
case '-':
print_word(&diff_words->minus, len, DIFF_FILE_OLD, 1);
break;
case '+':
print_word(&diff_words->plus, len, DIFF_FILE_NEW, 0);
break;
case ' ':
print_word(&diff_words->plus, len, DIFF_PLAIN, 0);
diff_words->minus.current += len;
break;
}
}
/* this executes the word diff on the accumulated buffers */
static void diff_words_show(struct diff_words_data *diff_words)
{
xpparam_t xpp;
xdemitconf_t xecfg;
xdemitcb_t ecb;
mmfile_t minus, plus;
int i;
minus.size = diff_words->minus.text.size;
minus.ptr = xmalloc(minus.size);
memcpy(minus.ptr, diff_words->minus.text.ptr, minus.size);
for (i = 0; i < minus.size; i++)
if (isspace(minus.ptr[i]))
minus.ptr[i] = '\n';
diff_words->minus.current = 0;
plus.size = diff_words->plus.text.size;
plus.ptr = xmalloc(plus.size);
memcpy(plus.ptr, diff_words->plus.text.ptr, plus.size);
for (i = 0; i < plus.size; i++)
if (isspace(plus.ptr[i]))
plus.ptr[i] = '\n';
diff_words->plus.current = 0;
xpp.flags = XDF_NEED_MINIMAL;
xecfg.ctxlen = diff_words->minus.alloc + diff_words->plus.alloc;
xecfg.flags = 0;
ecb.outf = xdiff_outf;
ecb.priv = diff_words;
diff_words->xm.consume = fn_out_diff_words_aux;
xdl_diff(&minus, &plus, &xpp, &xecfg, &ecb);
free(minus.ptr);
free(plus.ptr);
diff_words->minus.text.size = diff_words->plus.text.size = 0;
if (diff_words->minus.suppressed_newline) {
putchar('\n');
diff_words->minus.suppressed_newline = 0;
}
}
struct emit_callback {
struct xdiff_emit_state xm;
int nparents, color_diff;
const char **label_path;
struct diff_words_data *diff_words;
};
static void free_diff_words_data(struct emit_callback *ecbdata)
{
if (ecbdata->diff_words) {
/* flush buffers */
if (ecbdata->diff_words->minus.text.size ||
ecbdata->diff_words->plus.text.size)
diff_words_show(ecbdata->diff_words);
if (ecbdata->diff_words->minus.text.ptr)
free (ecbdata->diff_words->minus.text.ptr);
if (ecbdata->diff_words->plus.text.ptr)
free (ecbdata->diff_words->plus.text.ptr);
free(ecbdata->diff_words);
ecbdata->diff_words = NULL;
}
}
const char *diff_get_color(int diff_use_color, enum color_diff ix)
{
if (diff_use_color)
return diff_colors[ix];
return "";
}
static void emit_line(const char *set, const char *reset, const char *line, int len)
{
if (len > 0 && line[len-1] == '\n')
len--;
fputs(set, stdout);
fwrite(line, len, 1, stdout);
puts(reset);
}
static void emit_add_line(const char *reset, struct emit_callback *ecbdata, const char *line, int len)
{
int col0 = ecbdata->nparents;
int last_tab_in_indent = -1;
int last_space_in_indent = -1;
int i;
int tail = len;
int need_highlight_leading_space = 0;
const char *ws = diff_get_color(ecbdata->color_diff, DIFF_WHITESPACE);
const char *set = diff_get_color(ecbdata->color_diff, DIFF_FILE_NEW);
if (!*ws) {
emit_line(set, reset, line, len);
return;
}
/* The line is a newly added line. Does it have funny leading
* whitespaces? In indent, SP should never precede a TAB.
*/
for (i = col0; i < len; i++) {
if (line[i] == '\t') {
last_tab_in_indent = i;
if (0 <= last_space_in_indent)
need_highlight_leading_space = 1;
}
else if (line[i] == ' ')
last_space_in_indent = i;
else
break;
}
fputs(set, stdout);
fwrite(line, col0, 1, stdout);
fputs(reset, stdout);
if (((i == len) || line[i] == '\n') && i != col0) {
/* The whole line was indent */
emit_line(ws, reset, line + col0, len - col0);
return;
}
i = col0;
if (need_highlight_leading_space) {
while (i < last_tab_in_indent) {
if (line[i] == ' ') {
fputs(ws, stdout);
putchar(' ');
fputs(reset, stdout);
}
else
putchar(line[i]);
i++;
}
}
tail = len - 1;
if (line[tail] == '\n' && i < tail)
tail--;
while (i < tail) {
if (!isspace(line[tail]))
break;
tail--;
}
if ((i < tail && line[tail + 1] != '\n')) {
/* This has whitespace between tail+1..len */
fputs(set, stdout);
fwrite(line + i, tail - i + 1, 1, stdout);
fputs(reset, stdout);
emit_line(ws, reset, line + tail + 1, len - tail - 1);
}
else
emit_line(set, reset, line + i, len - i);
}
static void fn_out_consume(void *priv, char *line, unsigned long len)
{
int i;
int color;
struct emit_callback *ecbdata = priv;
const char *set = diff_get_color(ecbdata->color_diff, DIFF_METAINFO);
const char *reset = diff_get_color(ecbdata->color_diff, DIFF_RESET);
if (ecbdata->label_path[0]) {
printf("%s--- %s%s\n", set, ecbdata->label_path[0], reset);
printf("%s+++ %s%s\n", set, ecbdata->label_path[1], reset);
ecbdata->label_path[0] = ecbdata->label_path[1] = NULL;
}
/* This is not really necessary for now because
* this codepath only deals with two-way diffs.
*/
for (i = 0; i < len && line[i] == '@'; i++)
;
if (2 <= i && i < len && line[i] == ' ') {
ecbdata->nparents = i - 1;
emit_line(diff_get_color(ecbdata->color_diff, DIFF_FRAGINFO),
reset, line, len);
return;
}
if (len < ecbdata->nparents) {
set = reset;
emit_line(reset, reset, line, len);
return;
}
color = DIFF_PLAIN;
if (ecbdata->diff_words && ecbdata->nparents != 1)
/* fall back to normal diff */
free_diff_words_data(ecbdata);
if (ecbdata->diff_words) {
if (line[0] == '-') {
diff_words_append(line, len,
&ecbdata->diff_words->minus);
return;
} else if (line[0] == '+') {
diff_words_append(line, len,
&ecbdata->diff_words->plus);
return;
}
if (ecbdata->diff_words->minus.text.size ||
ecbdata->diff_words->plus.text.size)
diff_words_show(ecbdata->diff_words);
line++;
len--;
emit_line(set, reset, line, len);
return;
}
for (i = 0; i < ecbdata->nparents && len; i++) {
if (line[i] == '-')
color = DIFF_FILE_OLD;
else if (line[i] == '+')
color = DIFF_FILE_NEW;
}
if (color != DIFF_FILE_NEW) {
emit_line(diff_get_color(ecbdata->color_diff, color),
reset, line, len);
return;
}
emit_add_line(reset, ecbdata, line, len);
}
static char *pprint_rename(const char *a, const char *b)
{
const char *old = a;
const char *new = b;
char *name = NULL;
int pfx_length, sfx_length;
int len_a = strlen(a);
int len_b = strlen(b);
/* Find common prefix */
pfx_length = 0;
while (*old && *new && *old == *new) {
if (*old == '/')
pfx_length = old - a + 1;
old++;
new++;
}
/* Find common suffix */
old = a + len_a;
new = b + len_b;
sfx_length = 0;
while (a <= old && b <= new && *old == *new) {
if (*old == '/')
sfx_length = len_a - (old - a);
old--;
new--;
}
/*
* pfx{mid-a => mid-b}sfx
* {pfx-a => pfx-b}sfx
* pfx{sfx-a => sfx-b}
* name-a => name-b
*/
if (pfx_length + sfx_length) {
int a_midlen = len_a - pfx_length - sfx_length;
int b_midlen = len_b - pfx_length - sfx_length;
if (a_midlen < 0) a_midlen = 0;
if (b_midlen < 0) b_midlen = 0;
name = xmalloc(pfx_length + a_midlen + b_midlen + sfx_length + 7);
sprintf(name, "%.*s{%.*s => %.*s}%s",
pfx_length, a,
a_midlen, a + pfx_length,
b_midlen, b + pfx_length,
a + len_a - sfx_length);
}
else {
name = xmalloc(len_a + len_b + 5);
sprintf(name, "%s => %s", a, b);
}
return name;
}
struct diffstat_t {
struct xdiff_emit_state xm;
int nr;
int alloc;
struct diffstat_file {
char *name;
unsigned is_unmerged:1;
unsigned is_binary:1;
unsigned is_renamed:1;
unsigned int added, deleted;
} **files;
};
static struct diffstat_file *diffstat_add(struct diffstat_t *diffstat,
const char *name_a,
const char *name_b)
{
struct diffstat_file *x;
x = xcalloc(sizeof (*x), 1);
if (diffstat->nr == diffstat->alloc) {
diffstat->alloc = alloc_nr(diffstat->alloc);
diffstat->files = xrealloc(diffstat->files,
diffstat->alloc * sizeof(x));
}
diffstat->files[diffstat->nr++] = x;
if (name_b) {
x->name = pprint_rename(name_a, name_b);
x->is_renamed = 1;
}
else
x->name = xstrdup(name_a);
return x;
}
static void diffstat_consume(void *priv, char *line, unsigned long len)
{
struct diffstat_t *diffstat = priv;
struct diffstat_file *x = diffstat->files[diffstat->nr - 1];
if (line[0] == '+')
x->added++;
else if (line[0] == '-')
x->deleted++;
}
const char mime_boundary_leader[] = "------------";
static int scale_linear(int it, int width, int max_change)
{
/*
* make sure that at least one '-' is printed if there were deletions,
* and likewise for '+'.
*/
if (max_change < 2)
return it;
return ((it - 1) * (width - 1) + max_change - 1) / (max_change - 1);
}
static void show_name(const char *prefix, const char *name, int len,
const char *reset, const char *set)
{
printf(" %s%s%-*s%s |", set, prefix, len, name, reset);
}
static void show_graph(char ch, int cnt, const char *set, const char *reset)
{
if (cnt <= 0)
return;
printf("%s", set);
while (cnt--)
putchar(ch);
printf("%s", reset);
}
static void show_stats(struct diffstat_t* data, struct diff_options *options)
{
int i, len, add, del, total, adds = 0, dels = 0;
int max_change = 0, max_len = 0;
int total_files = data->nr;
int width, name_width;
const char *reset, *set, *add_c, *del_c;
if (data->nr == 0)
return;
width = options->stat_width ? options->stat_width : 80;
name_width = options->stat_name_width ? options->stat_name_width : 50;
/* Sanity: give at least 5 columns to the graph,
* but leave at least 10 columns for the name.
*/
if (width < name_width + 15) {
if (name_width <= 25)
width = name_width + 15;
else
name_width = width - 15;
}
/* Find the longest filename and max number of changes */
reset = diff_get_color(options->color_diff, DIFF_RESET);
set = diff_get_color(options->color_diff, DIFF_PLAIN);
add_c = diff_get_color(options->color_diff, DIFF_FILE_NEW);
del_c = diff_get_color(options->color_diff, DIFF_FILE_OLD);
for (i = 0; i < data->nr; i++) {
struct diffstat_file *file = data->files[i];
int change = file->added + file->deleted;
len = quote_c_style(file->name, NULL, NULL, 0);
if (len) {
char *qname = xmalloc(len + 1);
quote_c_style(file->name, qname, NULL, 0);
free(file->name);
file->name = qname;
}
len = strlen(file->name);
if (max_len < len)
max_len = len;
if (file->is_binary || file->is_unmerged)
continue;
if (max_change < change)
max_change = change;
}
/* Compute the width of the graph part;
* 10 is for one blank at the beginning of the line plus
* " | count " between the name and the graph.
*
* From here on, name_width is the width of the name area,
* and width is the width of the graph area.
*/
name_width = (name_width < max_len) ? name_width : max_len;
if (width < (name_width + 10) + max_change)
width = width - (name_width + 10);
else
width = max_change;
for (i = 0; i < data->nr; i++) {
const char *prefix = "";
char *name = data->files[i]->name;
int added = data->files[i]->added;
int deleted = data->files[i]->deleted;
int name_len;
/*
* "scale" the filename
*/
len = name_width;
name_len = strlen(name);
if (name_width < name_len) {
char *slash;
prefix = "...";
len -= 3;
name += name_len - len;
slash = strchr(name, '/');
if (slash)
name = slash;
}
if (data->files[i]->is_binary) {
show_name(prefix, name, len, reset, set);
printf(" Bin\n");
goto free_diffstat_file;
}
else if (data->files[i]->is_unmerged) {
show_name(prefix, name, len, reset, set);
printf(" Unmerged\n");
goto free_diffstat_file;
}
else if (!data->files[i]->is_renamed &&
(added + deleted == 0)) {
total_files--;
goto free_diffstat_file;
}
/*
* scale the add/delete
*/
add = added;
del = deleted;
total = add + del;
adds += add;
dels += del;
if (width <= max_change) {
add = scale_linear(add, width, max_change);
del = scale_linear(del, width, max_change);
total = add + del;
}
show_name(prefix, name, len, reset, set);
printf("%5d ", added + deleted);
show_graph('+', add, add_c, reset);
show_graph('-', del, del_c, reset);
putchar('\n');
free_diffstat_file:
free(data->files[i]->name);
free(data->files[i]);
}
free(data->files);
printf("%s %d files changed, %d insertions(+), %d deletions(-)%s\n",
set, total_files, adds, dels, reset);
}
static void show_shortstats(struct diffstat_t* data)
{
int i, adds = 0, dels = 0, total_files = data->nr;
if (data->nr == 0)
return;
for (i = 0; i < data->nr; i++) {
if (!data->files[i]->is_binary &&
!data->files[i]->is_unmerged) {
int added = data->files[i]->added;
int deleted= data->files[i]->deleted;
if (!data->files[i]->is_renamed &&
(added + deleted == 0)) {
total_files--;
} else {
adds += added;
dels += deleted;
}
}
free(data->files[i]->name);
free(data->files[i]);
}
free(data->files);
printf(" %d files changed, %d insertions(+), %d deletions(-)\n",
total_files, adds, dels);
}
static void show_numstat(struct diffstat_t* data, struct diff_options *options)
{
int i;
for (i = 0; i < data->nr; i++) {
struct diffstat_file *file = data->files[i];
if (file->is_binary)
printf("-\t-\t");
else
printf("%d\t%d\t", file->added, file->deleted);
if (options->line_termination &&
quote_c_style(file->name, NULL, NULL, 0))
quote_c_style(file->name, NULL, stdout, 0);
else
fputs(file->name, stdout);
putchar(options->line_termination);
}
}
struct checkdiff_t {
struct xdiff_emit_state xm;
const char *filename;
int lineno;
};
static void checkdiff_consume(void *priv, char *line, unsigned long len)
{
struct checkdiff_t *data = priv;
if (line[0] == '+') {
int i, spaces = 0;
data->lineno++;
/* check space before tab */
for (i = 1; i < len && (line[i] == ' ' || line[i] == '\t'); i++)
if (line[i] == ' ')
spaces++;
if (line[i - 1] == '\t' && spaces)
printf("%s:%d: space before tab:%.*s\n",
data->filename, data->lineno, (int)len, line);
/* check white space at line end */
if (line[len - 1] == '\n')
len--;
if (isspace(line[len - 1]))
printf("%s:%d: white space at end: %.*s\n",
data->filename, data->lineno, (int)len, line);
} else if (line[0] == ' ')
data->lineno++;
else if (line[0] == '@') {
char *plus = strchr(line, '+');
if (plus)
data->lineno = strtol(plus, NULL, 10);
else
die("invalid diff");
}
}
static unsigned char *deflate_it(char *data,
unsigned long size,
unsigned long *result_size)
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
{
int bound;
unsigned char *deflated;
z_stream stream;
memset(&stream, 0, sizeof(stream));
deflateInit(&stream, zlib_compression_level);
bound = deflateBound(&stream, size);
deflated = xmalloc(bound);
stream.next_out = deflated;
stream.avail_out = bound;
stream.next_in = (unsigned char *)data;
stream.avail_in = size;
while (deflate(&stream, Z_FINISH) == Z_OK)
; /* nothing */
deflateEnd(&stream);
*result_size = stream.total_out;
return deflated;
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
}
static void emit_binary_diff_body(mmfile_t *one, mmfile_t *two)
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
{
void *cp;
void *delta;
void *deflated;
void *data;
unsigned long orig_size;
unsigned long delta_size;
unsigned long deflate_size;
unsigned long data_size;
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
/* We could do deflated delta, or we could do just deflated two,
* whichever is smaller.
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
*/
delta = NULL;
deflated = deflate_it(two->ptr, two->size, &deflate_size);
if (one->size && two->size) {
delta = diff_delta(one->ptr, one->size,
two->ptr, two->size,
&delta_size, deflate_size);
if (delta) {
void *to_free = delta;
orig_size = delta_size;
delta = deflate_it(delta, delta_size, &delta_size);
free(to_free);
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
}
}
if (delta && delta_size < deflate_size) {
printf("delta %lu\n", orig_size);
free(deflated);
data = delta;
data_size = delta_size;
}
else {
printf("literal %lu\n", two->size);
free(delta);
data = deflated;
data_size = deflate_size;
}
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
/* emit data encoded in base85 */
cp = data;
while (data_size) {
int bytes = (52 < data_size) ? 52 : data_size;
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
char line[70];
data_size -= bytes;
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
if (bytes <= 26)
line[0] = bytes + 'A' - 1;
else
line[0] = bytes - 26 + 'a' - 1;
encode_85(line + 1, cp, bytes);
cp = (char *) cp + bytes;
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
puts(line);
}
printf("\n");
free(data);
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
}
static void emit_binary_diff(mmfile_t *one, mmfile_t *two)
{
printf("GIT binary patch\n");
emit_binary_diff_body(one, two);
emit_binary_diff_body(two, one);
}
#define FIRST_FEW_BYTES 8000
static int mmfile_is_binary(mmfile_t *mf)
{
long sz = mf->size;
if (FIRST_FEW_BYTES < sz)
sz = FIRST_FEW_BYTES;
return !!memchr(mf->ptr, 0, sz);
}
static void builtin_diff(const char *name_a,
const char *name_b,
struct diff_filespec *one,
struct diff_filespec *two,
const char *xfrm_msg,
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
struct diff_options *o,
int complete_rewrite)
{
mmfile_t mf1, mf2;
const char *lbl[2];
char *a_one, *b_two;
const char *set = diff_get_color(o->color_diff, DIFF_METAINFO);
const char *reset = diff_get_color(o->color_diff, DIFF_RESET);
a_one = quote_two("a/", name_a);
b_two = quote_two("b/", name_b);
lbl[0] = DIFF_FILE_VALID(one) ? a_one : "/dev/null";
lbl[1] = DIFF_FILE_VALID(two) ? b_two : "/dev/null";
printf("%sdiff --git %s %s%s\n", set, a_one, b_two, reset);
if (lbl[0][0] == '/') {
/* /dev/null */
printf("%snew file mode %06o%s\n", set, two->mode, reset);
if (xfrm_msg && xfrm_msg[0])
printf("%s%s%s\n", set, xfrm_msg, reset);
}
else if (lbl[1][0] == '/') {
printf("%sdeleted file mode %06o%s\n", set, one->mode, reset);
if (xfrm_msg && xfrm_msg[0])
printf("%s%s%s\n", set, xfrm_msg, reset);
}
else {
if (one->mode != two->mode) {
printf("%sold mode %06o%s\n", set, one->mode, reset);
printf("%snew mode %06o%s\n", set, two->mode, reset);
}
if (xfrm_msg && xfrm_msg[0])
printf("%s%s%s\n", set, xfrm_msg, reset);
/*
* we do not run diff between different kind
* of objects.
*/
if ((one->mode ^ two->mode) & S_IFMT)
goto free_ab_and_return;
if (complete_rewrite) {
emit_rewrite_diff(name_a, name_b, one, two);
goto free_ab_and_return;
}
}
if (fill_mmfile(&mf1, one) < 0 || fill_mmfile(&mf2, two) < 0)
die("unable to read files to diff");
if (!o->text && (mmfile_is_binary(&mf1) || mmfile_is_binary(&mf2))) {
/* Quite common confusing case */
if (mf1.size == mf2.size &&
!memcmp(mf1.ptr, mf2.ptr, mf1.size))
goto free_ab_and_return;
if (o->binary)
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
emit_binary_diff(&mf1, &mf2);
else
printf("Binary files %s and %s differ\n",
lbl[0], lbl[1]);
}
else {
/* Crazy xdl interfaces.. */
const char *diffopts = getenv("GIT_DIFF_OPTS");
xpparam_t xpp;
xdemitconf_t xecfg;
xdemitcb_t ecb;
struct emit_callback ecbdata;
memset(&ecbdata, 0, sizeof(ecbdata));
ecbdata.label_path = lbl;
ecbdata.color_diff = o->color_diff;
xpp.flags = XDF_NEED_MINIMAL | o->xdl_opts;
xecfg.ctxlen = o->context;
xecfg.flags = XDL_EMIT_FUNCNAMES;
if (!diffopts)
;
else if (!strncmp(diffopts, "--unified=", 10))
xecfg.ctxlen = strtoul(diffopts + 10, NULL, 10);
else if (!strncmp(diffopts, "-u", 2))
xecfg.ctxlen = strtoul(diffopts + 2, NULL, 10);
ecb.outf = xdiff_outf;
ecb.priv = &ecbdata;
ecbdata.xm.consume = fn_out_consume;
if (o->color_diff_words)
ecbdata.diff_words =
xcalloc(1, sizeof(struct diff_words_data));
xdl_diff(&mf1, &mf2, &xpp, &xecfg, &ecb);
if (o->color_diff_words)
free_diff_words_data(&ecbdata);
}
free_ab_and_return:
free(a_one);
free(b_two);
return;
}
static void builtin_diffstat(const char *name_a, const char *name_b,
struct diff_filespec *one,
struct diff_filespec *two,
struct diffstat_t *diffstat,
struct diff_options *o,
int complete_rewrite)
{
mmfile_t mf1, mf2;
struct diffstat_file *data;
data = diffstat_add(diffstat, name_a, name_b);
if (!one || !two) {
data->is_unmerged = 1;
return;
}
if (complete_rewrite) {
diff_populate_filespec(one, 0);
diff_populate_filespec(two, 0);
data->deleted = count_lines(one->data, one->size);
data->added = count_lines(two->data, two->size);
return;
}
if (fill_mmfile(&mf1, one) < 0 || fill_mmfile(&mf2, two) < 0)
die("unable to read files to diff");
if (mmfile_is_binary(&mf1) || mmfile_is_binary(&mf2))
data->is_binary = 1;
else {
/* Crazy xdl interfaces.. */
xpparam_t xpp;
xdemitconf_t xecfg;
xdemitcb_t ecb;
xpp.flags = XDF_NEED_MINIMAL | o->xdl_opts;
xecfg.ctxlen = 0;
xecfg.flags = 0;
ecb.outf = xdiff_outf;
ecb.priv = diffstat;
xdl_diff(&mf1, &mf2, &xpp, &xecfg, &ecb);
}
}
static void builtin_checkdiff(const char *name_a, const char *name_b,
struct diff_filespec *one,
struct diff_filespec *two)
{
mmfile_t mf1, mf2;
struct checkdiff_t data;
if (!two)
return;
memset(&data, 0, sizeof(data));
data.xm.consume = checkdiff_consume;
data.filename = name_b ? name_b : name_a;
data.lineno = 0;
if (fill_mmfile(&mf1, one) < 0 || fill_mmfile(&mf2, two) < 0)
die("unable to read files to diff");
if (mmfile_is_binary(&mf2))
return;
else {
/* Crazy xdl interfaces.. */
xpparam_t xpp;
xdemitconf_t xecfg;
xdemitcb_t ecb;
xpp.flags = XDF_NEED_MINIMAL;
xecfg.ctxlen = 0;
xecfg.flags = 0;
ecb.outf = xdiff_outf;
ecb.priv = &data;
xdl_diff(&mf1, &mf2, &xpp, &xecfg, &ecb);
}
}
struct diff_filespec *alloc_filespec(const char *path)
{
int namelen = strlen(path);
struct diff_filespec *spec = xmalloc(sizeof(*spec) + namelen + 1);
memset(spec, 0, sizeof(*spec));
spec->path = (char *)(spec + 1);
memcpy(spec->path, path, namelen+1);
return spec;
}
void fill_filespec(struct diff_filespec *spec, const unsigned char *sha1,
unsigned short mode)
{
if (mode) {
spec->mode = canon_mode(mode);
hashcpy(spec->sha1, sha1);
spec->sha1_valid = !is_null_sha1(sha1);
}
}
/*
* Given a name and sha1 pair, if the dircache tells us the file in
* the work tree has that object contents, return true, so that
* prepare_temp_file() does not have to inflate and extract.
*/
Avoid accessing a slow working copy during diffcore operations. The Cygwin folks have done a fine job at creating a POSIX layer on Windows That Just Works(tm). However it comes with a penalty; accessing files in the working tree by way of stat/open/mmap can be slower for diffcore than inflating the data from a blob which is stored in a packfile. This performance problem is especially an issue in merge-recursive when dealing with nearly 7000 added files, as we are loading each file's content from the working directory to perform rename detection. I have literally seen (and sadly watched) paint dry in less time than it takes for merge-recursive to finish such a merge. On the other hand this very same merge runs very fast on Solaris. If Git is compiled with NO_FAST_WORKING_DIRECTORY set then we will avoid looking at the working directory when the blob in question is available within a packfile and the caller doesn't need the data unpacked into a temporary file. We don't use loose objects as they have the same open/mmap/close costs as the working directory file access, but have the additional CPU overhead of needing to inflate the content before use. So it is still faster to use the working tree file over the loose object. If the caller needs the file data unpacked into a temporary file its likely because they are going to call an external diff program, passing the file as a parameter. In this case reusing the working tree file will be faster as we don't need to inflate the data and write it out to a temporary file. The NO_FAST_WORKING_DIRECTORY feature is enabled by default on Cygwin, as that is the platform which currently appears to benefit the most from this option. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-12-14 12:15:57 +01:00
static int reuse_worktree_file(const char *name, const unsigned char *sha1, int want_file)
{
struct cache_entry *ce;
struct stat st;
int pos, len;
/* We do not read the cache ourselves here, because the
* benchmark with my previous version that always reads cache
* shows that it makes things worse for diff-tree comparing
* two linux-2.6 kernel trees in an already checked out work
* tree. This is because most diff-tree comparisons deal with
* only a small number of files, while reading the cache is
* expensive for a large project, and its cost outweighs the
* savings we get by not inflating the object to a temporary
* file. Practically, this code only helps when we are used
* by diff-cache --cached, which does read the cache before
* calling us.
*/
if (!active_cache)
return 0;
Avoid accessing a slow working copy during diffcore operations. The Cygwin folks have done a fine job at creating a POSIX layer on Windows That Just Works(tm). However it comes with a penalty; accessing files in the working tree by way of stat/open/mmap can be slower for diffcore than inflating the data from a blob which is stored in a packfile. This performance problem is especially an issue in merge-recursive when dealing with nearly 7000 added files, as we are loading each file's content from the working directory to perform rename detection. I have literally seen (and sadly watched) paint dry in less time than it takes for merge-recursive to finish such a merge. On the other hand this very same merge runs very fast on Solaris. If Git is compiled with NO_FAST_WORKING_DIRECTORY set then we will avoid looking at the working directory when the blob in question is available within a packfile and the caller doesn't need the data unpacked into a temporary file. We don't use loose objects as they have the same open/mmap/close costs as the working directory file access, but have the additional CPU overhead of needing to inflate the content before use. So it is still faster to use the working tree file over the loose object. If the caller needs the file data unpacked into a temporary file its likely because they are going to call an external diff program, passing the file as a parameter. In this case reusing the working tree file will be faster as we don't need to inflate the data and write it out to a temporary file. The NO_FAST_WORKING_DIRECTORY feature is enabled by default on Cygwin, as that is the platform which currently appears to benefit the most from this option. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-12-14 12:15:57 +01:00
/* We want to avoid the working directory if our caller
* doesn't need the data in a normal file, this system
* is rather slow with its stat/open/mmap/close syscalls,
* and the object is contained in a pack file. The pack
* is probably already open and will be faster to obtain
* the data through than the working directory. Loose
* objects however would tend to be slower as they need
* to be individually opened and inflated.
*/
if (FAST_WORKING_DIRECTORY && !want_file && has_sha1_pack(sha1, NULL))
return 0;
len = strlen(name);
pos = cache_name_pos(name, len);
if (pos < 0)
return 0;
ce = active_cache[pos];
if ((lstat(name, &st) < 0) ||
!S_ISREG(st.st_mode) || /* careful! */
ce_match_stat(ce, &st, 0) ||
hashcmp(sha1, ce->sha1))
return 0;
/* we return 1 only when we can stat, it is a regular file,
* stat information matches, and sha1 recorded in the cache
* matches. I.e. we know the file in the work tree really is
* the same as the <name, sha1> pair.
*/
return 1;
}
static struct sha1_size_cache {
unsigned char sha1[20];
unsigned long size;
} **sha1_size_cache;
static int sha1_size_cache_nr, sha1_size_cache_alloc;
static struct sha1_size_cache *locate_size_cache(unsigned char *sha1,
int find_only,
unsigned long size)
{
int first, last;
struct sha1_size_cache *e;
first = 0;
last = sha1_size_cache_nr;
while (last > first) {
int cmp, next = (last + first) >> 1;
e = sha1_size_cache[next];
cmp = hashcmp(e->sha1, sha1);
if (!cmp)
return e;
if (cmp < 0) {
last = next;
continue;
}
first = next+1;
}
/* not found */
if (find_only)
return NULL;
/* insert to make it at "first" */
if (sha1_size_cache_alloc <= sha1_size_cache_nr) {
sha1_size_cache_alloc = alloc_nr(sha1_size_cache_alloc);
sha1_size_cache = xrealloc(sha1_size_cache,
sha1_size_cache_alloc *
sizeof(*sha1_size_cache));
}
sha1_size_cache_nr++;
if (first < sha1_size_cache_nr)
memmove(sha1_size_cache + first + 1, sha1_size_cache + first,
(sha1_size_cache_nr - first - 1) *
sizeof(*sha1_size_cache));
e = xmalloc(sizeof(struct sha1_size_cache));
sha1_size_cache[first] = e;
hashcpy(e->sha1, sha1);
e->size = size;
return e;
}
/*
* While doing rename detection and pickaxe operation, we may need to
* grab the data for the blob (or file) for our own in-core comparison.
* diff_filespec has data and size fields for this purpose.
*/
int diff_populate_filespec(struct diff_filespec *s, int size_only)
{
int err = 0;
if (!DIFF_FILE_VALID(s))
die("internal error: asking to populate invalid file.");
if (S_ISDIR(s->mode))
return -1;
if (!use_size_cache)
size_only = 0;
if (s->data)
return err;
if (!s->sha1_valid ||
Avoid accessing a slow working copy during diffcore operations. The Cygwin folks have done a fine job at creating a POSIX layer on Windows That Just Works(tm). However it comes with a penalty; accessing files in the working tree by way of stat/open/mmap can be slower for diffcore than inflating the data from a blob which is stored in a packfile. This performance problem is especially an issue in merge-recursive when dealing with nearly 7000 added files, as we are loading each file's content from the working directory to perform rename detection. I have literally seen (and sadly watched) paint dry in less time than it takes for merge-recursive to finish such a merge. On the other hand this very same merge runs very fast on Solaris. If Git is compiled with NO_FAST_WORKING_DIRECTORY set then we will avoid looking at the working directory when the blob in question is available within a packfile and the caller doesn't need the data unpacked into a temporary file. We don't use loose objects as they have the same open/mmap/close costs as the working directory file access, but have the additional CPU overhead of needing to inflate the content before use. So it is still faster to use the working tree file over the loose object. If the caller needs the file data unpacked into a temporary file its likely because they are going to call an external diff program, passing the file as a parameter. In this case reusing the working tree file will be faster as we don't need to inflate the data and write it out to a temporary file. The NO_FAST_WORKING_DIRECTORY feature is enabled by default on Cygwin, as that is the platform which currently appears to benefit the most from this option. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-12-14 12:15:57 +01:00
reuse_worktree_file(s->path, s->sha1, 0)) {
struct stat st;
int fd;
if (lstat(s->path, &st) < 0) {
if (errno == ENOENT) {
err_empty:
err = -1;
empty:
s->data = (char *)"";
s->size = 0;
return err;
}
}
s->size = st.st_size;
if (!s->size)
goto empty;
if (size_only)
return 0;
if (S_ISLNK(st.st_mode)) {
int ret;
s->data = xmalloc(s->size);
s->should_free = 1;
ret = readlink(s->path, s->data, s->size);
if (ret < 0) {
free(s->data);
goto err_empty;
}
return 0;
}
fd = open(s->path, O_RDONLY);
if (fd < 0)
goto err_empty;
s->data = mmap(NULL, s->size, PROT_READ, MAP_PRIVATE, fd, 0);
close(fd);
if (s->data == MAP_FAILED)
goto err_empty;
s->should_munmap = 1;
}
else {
char type[20];
struct sha1_size_cache *e;
if (size_only) {
e = locate_size_cache(s->sha1, 1, 0);
if (e) {
s->size = e->size;
return 0;
}
if (!sha1_object_info(s->sha1, type, &s->size))
locate_size_cache(s->sha1, 0, s->size);
}
else {
s->data = read_sha1_file(s->sha1, type, &s->size);
s->should_free = 1;
}
}
return 0;
}
void diff_free_filespec_data(struct diff_filespec *s)
{
if (s->should_free)
free(s->data);
else if (s->should_munmap)
munmap(s->data, s->size);
s->should_free = s->should_munmap = 0;
s->data = NULL;
free(s->cnt_data);
s->cnt_data = NULL;
}
static void prep_temp_blob(struct diff_tempfile *temp,
void *blob,
unsigned long size,
const unsigned char *sha1,
int mode)
{
int fd;
fd = git_mkstemp(temp->tmp_path, TEMPFILE_PATH_LEN, ".diff_XXXXXX");
if (fd < 0)
die("unable to create temp-file");
if (write(fd, blob, size) != size)
die("unable to write temp-file");
close(fd);
temp->name = temp->tmp_path;
strcpy(temp->hex, sha1_to_hex(sha1));
temp->hex[40] = 0;
sprintf(temp->mode, "%06o", mode);
}
static void prepare_temp_file(const char *name,
struct diff_tempfile *temp,
struct diff_filespec *one)
{
if (!DIFF_FILE_VALID(one)) {
not_a_valid_file:
/* A '-' entry produces this for file-2, and
* a '+' entry produces this for file-1.
*/
temp->name = "/dev/null";
strcpy(temp->hex, ".");
strcpy(temp->mode, ".");
return;
}
if (!one->sha1_valid ||
Avoid accessing a slow working copy during diffcore operations. The Cygwin folks have done a fine job at creating a POSIX layer on Windows That Just Works(tm). However it comes with a penalty; accessing files in the working tree by way of stat/open/mmap can be slower for diffcore than inflating the data from a blob which is stored in a packfile. This performance problem is especially an issue in merge-recursive when dealing with nearly 7000 added files, as we are loading each file's content from the working directory to perform rename detection. I have literally seen (and sadly watched) paint dry in less time than it takes for merge-recursive to finish such a merge. On the other hand this very same merge runs very fast on Solaris. If Git is compiled with NO_FAST_WORKING_DIRECTORY set then we will avoid looking at the working directory when the blob in question is available within a packfile and the caller doesn't need the data unpacked into a temporary file. We don't use loose objects as they have the same open/mmap/close costs as the working directory file access, but have the additional CPU overhead of needing to inflate the content before use. So it is still faster to use the working tree file over the loose object. If the caller needs the file data unpacked into a temporary file its likely because they are going to call an external diff program, passing the file as a parameter. In this case reusing the working tree file will be faster as we don't need to inflate the data and write it out to a temporary file. The NO_FAST_WORKING_DIRECTORY feature is enabled by default on Cygwin, as that is the platform which currently appears to benefit the most from this option. Signed-off-by: Shawn O. Pearce <spearce@spearce.org> Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-12-14 12:15:57 +01:00
reuse_worktree_file(name, one->sha1, 1)) {
struct stat st;
if (lstat(name, &st) < 0) {
if (errno == ENOENT)
goto not_a_valid_file;
die("stat(%s): %s", name, strerror(errno));
}
if (S_ISLNK(st.st_mode)) {
int ret;
char buf[PATH_MAX + 1]; /* ought to be SYMLINK_MAX */
if (sizeof(buf) <= st.st_size)
die("symlink too long: %s", name);
ret = readlink(name, buf, st.st_size);
if (ret < 0)
die("readlink(%s)", name);
prep_temp_blob(temp, buf, st.st_size,
(one->sha1_valid ?
one->sha1 : null_sha1),
(one->sha1_valid ?
one->mode : S_IFLNK));
}
else {
/* we can borrow from the file in the work tree */
temp->name = name;
if (!one->sha1_valid)
strcpy(temp->hex, sha1_to_hex(null_sha1));
else
strcpy(temp->hex, sha1_to_hex(one->sha1));
/* Even though we may sometimes borrow the
* contents from the work tree, we always want
* one->mode. mode is trustworthy even when
* !(one->sha1_valid), as long as
* DIFF_FILE_VALID(one).
*/
sprintf(temp->mode, "%06o", one->mode);
}
return;
}
else {
if (diff_populate_filespec(one, 0))
die("cannot read data blob for %s", one->path);
prep_temp_blob(temp, one->data, one->size,
one->sha1, one->mode);
}
}
static void remove_tempfile(void)
{
int i;
for (i = 0; i < 2; i++)
if (diff_temp[i].name == diff_temp[i].tmp_path) {
unlink(diff_temp[i].name);
diff_temp[i].name = NULL;
}
}
static void remove_tempfile_on_signal(int signo)
{
remove_tempfile();
signal(SIGINT, SIG_DFL);
raise(signo);
}
static int spawn_prog(const char *pgm, const char **arg)
{
pid_t pid;
int status;
fflush(NULL);
pid = fork();
if (pid < 0)
die("unable to fork");
if (!pid) {
execvp(pgm, (char *const*) arg);
exit(255);
}
while (waitpid(pid, &status, 0) < 0) {
if (errno == EINTR)
continue;
return -1;
}
/* Earlier we did not check the exit status because
* diff exits non-zero if files are different, and
* we are not interested in knowing that. It was a
* mistake which made it harder to quit a diff-*
* session that uses the git-apply-patch-script as
* the GIT_EXTERNAL_DIFF. A custom GIT_EXTERNAL_DIFF
* should also exit non-zero only when it wants to
* abort the entire diff-* session.
*/
if (WIFEXITED(status) && !WEXITSTATUS(status))
return 0;
return -1;
}
/* An external diff command takes:
*
* diff-cmd name infile1 infile1-sha1 infile1-mode \
* infile2 infile2-sha1 infile2-mode [ rename-to ]
*
*/
static void run_external_diff(const char *pgm,
const char *name,
const char *other,
struct diff_filespec *one,
struct diff_filespec *two,
const char *xfrm_msg,
int complete_rewrite)
{
const char *spawn_arg[10];
struct diff_tempfile *temp = diff_temp;
int retval;
static int atexit_asked = 0;
const char *othername;
const char **arg = &spawn_arg[0];
othername = (other? other : name);
if (one && two) {
prepare_temp_file(name, &temp[0], one);
prepare_temp_file(othername, &temp[1], two);
if (! atexit_asked &&
(temp[0].name == temp[0].tmp_path ||
temp[1].name == temp[1].tmp_path)) {
atexit_asked = 1;
atexit(remove_tempfile);
}
signal(SIGINT, remove_tempfile_on_signal);
}
if (one && two) {
*arg++ = pgm;
*arg++ = name;
*arg++ = temp[0].name;
*arg++ = temp[0].hex;
*arg++ = temp[0].mode;
*arg++ = temp[1].name;
*arg++ = temp[1].hex;
*arg++ = temp[1].mode;
if (other) {
*arg++ = other;
*arg++ = xfrm_msg;
}
} else {
*arg++ = pgm;
*arg++ = name;
}
*arg = NULL;
retval = spawn_prog(pgm, spawn_arg);
remove_tempfile();
if (retval) {
fprintf(stderr, "external diff died, stopping at %s.\n", name);
exit(1);
}
}
static void run_diff_cmd(const char *pgm,
const char *name,
const char *other,
struct diff_filespec *one,
struct diff_filespec *two,
const char *xfrm_msg,
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
struct diff_options *o,
int complete_rewrite)
{
if (pgm) {
run_external_diff(pgm, name, other, one, two, xfrm_msg,
complete_rewrite);
return;
}
if (one && two)
builtin_diff(name, other ? other : name,
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
one, two, xfrm_msg, o, complete_rewrite);
else
printf("* Unmerged path %s\n", name);
}
static void diff_fill_sha1_info(struct diff_filespec *one)
{
if (DIFF_FILE_VALID(one)) {
if (!one->sha1_valid) {
struct stat st;
if (lstat(one->path, &st) < 0)
die("stat %s", one->path);
if (index_path(one->sha1, one->path, &st, 0))
die("cannot hash %s\n", one->path);
}
}
else
hashclr(one->sha1);
}
static void run_diff(struct diff_filepair *p, struct diff_options *o)
{
const char *pgm = external_diff();
char msg[PATH_MAX*2+300], *xfrm_msg;
struct diff_filespec *one;
struct diff_filespec *two;
const char *name;
const char *other;
char *name_munged, *other_munged;
int complete_rewrite = 0;
int len;
if (DIFF_PAIR_UNMERGED(p)) {
/* unmerged */
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
run_diff_cmd(pgm, p->one->path, NULL, NULL, NULL, NULL, o, 0);
return;
}
name = p->one->path;
other = (strcmp(name, p->two->path) ? p->two->path : NULL);
name_munged = quote_one(name);
other_munged = quote_one(other);
one = p->one; two = p->two;
diff_fill_sha1_info(one);
diff_fill_sha1_info(two);
len = 0;
switch (p->status) {
case DIFF_STATUS_COPIED:
len += snprintf(msg + len, sizeof(msg) - len,
"similarity index %d%%\n"
"copy from %s\n"
"copy to %s\n",
(int)(0.5 + p->score * 100.0/MAX_SCORE),
name_munged, other_munged);
break;
case DIFF_STATUS_RENAMED:
len += snprintf(msg + len, sizeof(msg) - len,
"similarity index %d%%\n"
"rename from %s\n"
"rename to %s\n",
(int)(0.5 + p->score * 100.0/MAX_SCORE),
name_munged, other_munged);
break;
case DIFF_STATUS_MODIFIED:
if (p->score) {
len += snprintf(msg + len, sizeof(msg) - len,
"dissimilarity index %d%%\n",
(int)(0.5 + p->score *
100.0/MAX_SCORE));
complete_rewrite = 1;
break;
}
/* fallthru */
default:
/* nothing */
;
}
if (hashcmp(one->sha1, two->sha1)) {
int abbrev = o->full_index ? 40 : DEFAULT_ABBREV;
if (o->binary) {
mmfile_t mf;
if ((!fill_mmfile(&mf, one) && mmfile_is_binary(&mf)) ||
(!fill_mmfile(&mf, two) && mmfile_is_binary(&mf)))
abbrev = 40;
}
len += snprintf(msg + len, sizeof(msg) - len,
"index %.*s..%.*s",
abbrev, sha1_to_hex(one->sha1),
abbrev, sha1_to_hex(two->sha1));
if (one->mode == two->mode)
len += snprintf(msg + len, sizeof(msg) - len,
" %06o", one->mode);
len += snprintf(msg + len, sizeof(msg) - len, "\n");
}
if (len)
msg[--len] = 0;
xfrm_msg = len ? msg : NULL;
if (!pgm &&
DIFF_FILE_VALID(one) && DIFF_FILE_VALID(two) &&
(S_IFMT & one->mode) != (S_IFMT & two->mode)) {
/* a filepair that changes between file and symlink
* needs to be split into deletion and creation.
*/
struct diff_filespec *null = alloc_filespec(two->path);
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
run_diff_cmd(NULL, name, other, one, null, xfrm_msg, o, 0);
free(null);
null = alloc_filespec(one->path);
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
run_diff_cmd(NULL, name, other, null, two, xfrm_msg, o, 0);
free(null);
}
else
binary patch. This adds "binary patch" to the diff output and teaches apply what to do with them. On the diff generation side, traditionally, we said "Binary files differ\n" without giving anything other than the preimage and postimage object name on the index line. This was good enough for applying a patch generated from your own repository (very useful while rebasing), because the postimage would be available in such a case. However, this was not useful when the recipient of such a patch via e-mail were to apply it, even if the preimage was available. This patch allows the diff to generate "binary" patch when operating under --full-index option. The binary patch follows the usual extended git diff headers, and looks like this: "GIT binary patch\n" <length byte><data>"\n" ... "\n" Each line is prefixed with a "length-byte", whose value is upper or lowercase alphabet that encodes number of bytes that the data on the line decodes to (1..52 -- 'A' means 1, 'B' means 2, ..., 'Z' means 26, 'a' means 27, ...). <data> is 1 or more groups of 5-byte sequence, each of which encodes up to 4 bytes in base85 encoding. Because 52 / 4 * 5 = 65 and we have the length byte, an output line is capped to 66 characters. The payload is the same diff-delta as we use in the packfiles. On the consumption side, git-apply now can decode and apply the binary patch when --allow-binary-replacement is given, the diff was generated with --full-index, and the receiving repository has the preimage blob, which is the same condition as it always required when accepting an "Binary files differ\n" patch. Signed-off-by: Junio C Hamano <junkio@cox.net>
2006-05-05 01:51:44 +02:00
run_diff_cmd(pgm, name, other, one, two, xfrm_msg, o,
complete_rewrite);
free(name_munged);
free(other_munged);
}
static void run_diffstat(struct diff_filepair *p, struct diff_options *o,
struct diffstat_t *diffstat)
{
const char *name;
const char *other;
int complete_rewrite = 0;
if (DIFF_PAIR_UNMERGED(p)) {
/* unmerged */
builtin_diffstat(p->one->path, NULL, NULL, NULL, diffstat, o, 0);
return;
}
name = p->one->path;
other = (strcmp(name, p->two->path) ? p->two->path : NULL);
diff_fill_sha1_info(p->one);
diff_fill_sha1_info(p->two);
if (p->status == DIFF_STATUS_MODIFIED && p->score)
complete_rewrite = 1;
builtin_diffstat(name, other, p->one, p->two, diffstat, o, complete_rewrite);
}
static void run_checkdiff(struct diff_filepair *p, struct diff_options *o)
{
const char *name;
const char *other;
if (DIFF_PAIR_UNMERGED(p)) {
/* unmerged */
return;
}
name = p->one->path;
other = (strcmp(name, p->two->path) ? p->two->path : NULL);
diff_fill_sha1_info(p->one);
diff_fill_sha1_info(p->two);
builtin_checkdiff(name, other, p->one, p->two);
}
void diff_setup(struct diff_options *options)
{
memset(options, 0, sizeof(*options));
options->line_termination = '\n';
options->break_opt = -1;
options->rename_limit = -1;
options->context = 3;
options->msg_sep = "";
options->change = diff_change;
options->add_remove = diff_addremove;
options->color_diff = diff_use_color_default;
options->detect_rename = diff_detect_rename_default;
}
int diff_setup_done(struct diff_options *options)
{
int count = 0;
if (options->output_format & DIFF_FORMAT_NAME)
count++;
if (options->output_format & DIFF_FORMAT_NAME_STATUS)
count++;
if (options->output_format & DIFF_FORMAT_CHECKDIFF)
count++;
if (options->output_format & DIFF_FORMAT_NO_OUTPUT)
count++;
if (count > 1)
die("--name-only, --name-status, --check and -s are mutually exclusive");
if (options->find_copies_harder)
options->detect_rename = DIFF_DETECT_COPY;
if (options->output_format & (DIFF_FORMAT_NAME |
DIFF_FORMAT_NAME_STATUS |
DIFF_FORMAT_CHECKDIFF |
DIFF_FORMAT_NO_OUTPUT))
options->output_format &= ~(DIFF_FORMAT_RAW |
DIFF_FORMAT_NUMSTAT |
DIFF_FORMAT_DIFFSTAT |
DIFF_FORMAT_SHORTSTAT |
DIFF_FORMAT_SUMMARY |
DIFF_FORMAT_PATCH);
/*
* These cases always need recursive; we do not drop caller-supplied
* recursive bits for other formats here.
*/
if (options->output_format & (DIFF_FORMAT_PATCH |
DIFF_FORMAT_NUMSTAT |
DIFF_FORMAT_DIFFSTAT |
DIFF_FORMAT_SHORTSTAT |
DIFF_FORMAT_SUMMARY |
DIFF_FORMAT_CHECKDIFF))
options->recursive = 1;
/*
* Also pickaxe would not work very well if you do not say recursive
*/
if (options->pickaxe)
options->recursive = 1;
if (options->detect_rename && options->rename_limit < 0)
options->rename_limit = diff_rename_limit_default;
if (options->setup & DIFF_SETUP_USE_CACHE) {
if (!active_cache)
/* read-cache does not die even when it fails
* so it is safe for us to do this here. Also
* it does not smudge active_cache or active_nr
* when it fails, so we do not have to worry about
* cleaning it up ourselves either.
*/
read_cache();
}
if (options->setup & DIFF_SETUP_USE_SIZE_CACHE)
use_size_cache = 1;
if (options->abbrev <= 0 || 40 < options->abbrev)
options->abbrev = 40; /* full */
return 0;
}
static int opt_arg(const char *arg, int arg_short, const char *arg_long, int *val)
{
char c, *eq;
int len;
if (*arg != '-')
return 0;
c = *++arg;
if (!c)
return 0;
if (c == arg_short) {
c = *++arg;
if (!c)
return 1;
if (val && isdigit(c)) {
char *end;
int n = strtoul(arg, &end, 10);
if (*end)
return 0;
*val = n;
return 1;
}
return 0;
}
if (c != '-')
return 0;
arg++;
eq = strchr(arg, '=');
if (eq)
len = eq - arg;
else
len = strlen(arg);
if (!len || strncmp(arg, arg_long, len))
return 0;
if (eq) {
int n;
char *end;
if (!isdigit(*++eq))
return 0;
n = strtoul(eq, &end, 10);
if (*end)
return 0;
*val = n;
}
return 1;
}
int diff_opt_parse(struct diff_options *options, const char **av, int ac)
{
const char *arg = av[0];
if (!strcmp(arg, "-p") || !strcmp(arg, "-u"))
options->output_format |= DIFF_FORMAT_PATCH;
else if (opt_arg(arg, 'U', "unified", &options->context))
options->output_format |= DIFF_FORMAT_PATCH;
else if (!strcmp(arg, "--raw"))
options->output_format |= DIFF_FORMAT_RAW;
else if (!strcmp(arg, "--patch-with-raw")) {
options->output_format |= DIFF_FORMAT_PATCH | DIFF_FORMAT_RAW;
}
else if (!strcmp(arg, "--numstat")) {
options->output_format |= DIFF_FORMAT_NUMSTAT;
}
else if (!strcmp(arg, "--shortstat")) {
options->output_format |= DIFF_FORMAT_SHORTSTAT;
}
else if (!strncmp(arg, "--stat", 6)) {
char *end;
int width = options->stat_width;
int name_width = options->stat_name_width;
arg += 6;
end = (char *)arg;
switch (*arg) {
case '-':
if (!strncmp(arg, "-width=", 7))
width = strtoul(arg + 7, &end, 10);
else if (!strncmp(arg, "-name-width=", 12))
name_width = strtoul(arg + 12, &end, 10);
break;
case '=':
width = strtoul(arg+1, &end, 10);
if (*end == ',')
name_width = strtoul(end+1, &end, 10);
}
/* Important! This checks all the error cases! */
if (*end)
return 0;
options->output_format |= DIFF_FORMAT_DIFFSTAT;
options->stat_name_width = name_width;
options->stat_width = width;
}
else if (!strcmp(arg, "--check"))
options->output_format |= DIFF_FORMAT_CHECKDIFF;
else if (!strcmp(arg, "--summary"))
options->output_format |= DIFF_FORMAT_SUMMARY;
else if (!strcmp(arg, "--patch-with-stat")) {
options->output_format |= DIFF_FORMAT_PATCH | DIFF_FORMAT_DIFFSTAT;
}
else if (!strcmp(arg, "-z"))
options->line_termination = 0;
else if (!strncmp(arg, "-l", 2))
options->rename_limit = strtoul(arg+2, NULL, 10);
else if (!strcmp(arg, "--full-index"))
options->full_index = 1;
else if (!strcmp(arg, "--binary")) {
options->output_format |= DIFF_FORMAT_PATCH;
options->binary = 1;
}
else if (!strcmp(arg, "-a") || !strcmp(arg, "--text")) {
options->text = 1;
}
else if (!strcmp(arg, "--name-only"))
options->output_format |= DIFF_FORMAT_NAME;
else if (!strcmp(arg, "--name-status"))
options->output_format |= DIFF_FORMAT_NAME_STATUS;
else if (!strcmp(arg, "-R"))
options->reverse_diff = 1;
else if (!strncmp(arg, "-S", 2))
options->pickaxe = arg + 2;
else if (!strcmp(arg, "-s")) {
options->output_format |= DIFF_FORMAT_NO_OUTPUT;
}
else if (!strncmp(arg, "-O", 2))
options->orderfile = arg + 2;
else if (!strncmp(arg, "--diff-filter=", 14))
options->filter = arg + 14;
else if (!strcmp(arg, "--pickaxe-all"))
options->pickaxe_opts = DIFF_PICKAXE_ALL;
else if (!strcmp(arg, "--pickaxe-regex"))
options->pickaxe_opts = DIFF_PICKAXE_REGEX;
else if (!strncmp(arg, "-B", 2)) {
if ((options->break_opt =
diff_scoreopt_parse(arg)) == -1)
return -1;
}
else if (!strncmp(arg, "-M", 2)) {
if ((options->rename_score =
diff_scoreopt_parse(arg)) == -1)
return -1;
options->detect_rename = DIFF_DETECT_RENAME;
}
else if (!strncmp(arg, "-C", 2)) {
if ((options->rename_score =
diff_scoreopt_parse(arg)) == -1)
return -1;
options->detect_rename = DIFF_DETECT_COPY;
}
else if (!strcmp(arg, "--find-copies-harder"))
options->find_copies_harder = 1;
else if (!strcmp(arg, "--abbrev"))
options->abbrev = DEFAULT_ABBREV;
else if (!strncmp(arg, "--abbrev=", 9)) {
options->abbrev = strtoul(arg + 9, NULL, 10);
if (options->abbrev < MINIMUM_ABBREV)
options->abbrev = MINIMUM_ABBREV;
else if (40 < options->abbrev)
options->abbrev = 40;
}
else if (!strcmp(arg, "--color"))
options->color_diff = 1;
else if (!strcmp(arg, "--no-color"))
options->color_diff = 0;
else if (!strcmp(arg, "-w") || !strcmp(arg, "--ignore-all-space"))
options->xdl_opts |= XDF_IGNORE_WHITESPACE;
else if (!strcmp(arg, "-b") || !strcmp(arg, "--ignore-space-change"))
options->xdl_opts |= XDF_IGNORE_WHITESPACE_CHANGE;
else if (!strcmp(arg, "--color-words"))
options->color_diff = options->color_diff_words = 1;
else if (!strcmp(arg, "--no-renames"))
options->detect_rename = 0;
else
return 0;
return 1;
}
static int parse_num(const char **cp_p)
{
unsigned long num, scale;
int ch, dot;
const char *cp = *cp_p;
num = 0;
scale = 1;
dot = 0;
for(;;) {
ch = *cp;
if ( !dot && ch == '.' ) {
scale = 1;
dot = 1;
} else if ( ch == '%' ) {
scale = dot ? scale*100 : 100;
cp++; /* % is always at the end */
break;
} else if ( ch >= '0' && ch <= '9' ) {
if ( scale < 100000 ) {
scale *= 10;
num = (num*10) + (ch-'0');
}
} else {
break;
}
cp++;
}
*cp_p = cp;
/* user says num divided by scale and we say internally that
* is MAX_SCORE * num / scale.
*/
return (num >= scale) ? MAX_SCORE : (MAX_SCORE * num / scale);
}
int diff_scoreopt_parse(const char *opt)
{
int opt1, opt2, cmd;
if (*opt++ != '-')
return -1;
cmd = *opt++;
if (cmd != 'M' && cmd != 'C' && cmd != 'B')
return -1; /* that is not a -M, -C nor -B option */
opt1 = parse_num(&opt);
if (cmd != 'B')
opt2 = 0;
else {
if (*opt == 0)
opt2 = 0;
else if (*opt != '/')
return -1; /* we expect -B80/99 or -B80 */
else {
opt++;
opt2 = parse_num(&opt);
}
}
if (*opt != 0)
return -1;
return opt1 | (opt2 << 16);
}
struct diff_queue_struct diff_queued_diff;
void diff_q(struct diff_queue_struct *queue, struct diff_filepair *dp)
{
if (queue->alloc <= queue->nr) {
queue->alloc = alloc_nr(queue->alloc);
queue->queue = xrealloc(queue->queue,
sizeof(dp) * queue->alloc);
}
queue->queue[queue->nr++] = dp;
}
struct diff_filepair *diff_queue(struct diff_queue_struct *queue,
struct diff_filespec *one,
struct diff_filespec *two)
{
struct diff_filepair *dp = xcalloc(1, sizeof(*dp));
dp->one = one;
dp->two = two;
if (queue)
diff_q(queue, dp);
return dp;
}
void diff_free_filepair(struct diff_filepair *p)
{
diff_free_filespec_data(p->one);
diff_free_filespec_data(p->two);
free(p->one);
free(p->two);
free(p);
}
/* This is different from find_unique_abbrev() in that
* it stuffs the result with dots for alignment.
*/
const char *diff_unique_abbrev(const unsigned char *sha1, int len)
{
int abblen;
const char *abbrev;
if (len == 40)
return sha1_to_hex(sha1);
abbrev = find_unique_abbrev(sha1, len);
if (!abbrev)
return sha1_to_hex(sha1);
abblen = strlen(abbrev);
if (abblen < 37) {
static char hex[41];
if (len < abblen && abblen <= len + 2)
sprintf(hex, "%s%.*s", abbrev, len+3-abblen, "..");
else
sprintf(hex, "%s...", abbrev);
return hex;
}
return sha1_to_hex(sha1);
}
static void diff_flush_raw(struct diff_filepair *p,
struct diff_options *options)
{
int two_paths;
char status[10];
int abbrev = options->abbrev;
const char *path_one, *path_two;
int inter_name_termination = '\t';
int line_termination = options->line_termination;
if (!line_termination)
inter_name_termination = 0;
path_one = p->one->path;
path_two = p->two->path;
if (line_termination) {
path_one = quote_one(path_one);
path_two = quote_one(path_two);
}
if (p->score)
sprintf(status, "%c%03d", p->status,
(int)(0.5 + p->score * 100.0/MAX_SCORE));
else {
status[0] = p->status;
status[1] = 0;
}
switch (p->status) {
case DIFF_STATUS_COPIED:
case DIFF_STATUS_RENAMED:
two_paths = 1;
break;
case DIFF_STATUS_ADDED:
case DIFF_STATUS_DELETED:
two_paths = 0;
break;
default:
two_paths = 0;
break;
}
if (!(options->output_format & DIFF_FORMAT_NAME_STATUS)) {
printf(":%06o %06o %s ",
p->one->mode, p->two->mode,
diff_unique_abbrev(p->one->sha1, abbrev));
printf("%s ",
diff_unique_abbrev(p->two->sha1, abbrev));
}
printf("%s%c%s", status, inter_name_termination, path_one);
if (two_paths)
printf("%c%s", inter_name_termination, path_two);
putchar(line_termination);
if (path_one != p->one->path)
free((void*)path_one);
if (path_two != p->two->path)
free((void*)path_two);
}
static void diff_flush_name(struct diff_filepair *p, int line_termination)
{
char *path = p->two->path;
if (line_termination)
path = quote_one(p->two->path);
printf("%s%c", path, line_termination);
if (p->two->path != path)
free(path);
}
int diff_unmodified_pair(struct diff_filepair *p)
{
/* This function is written stricter than necessary to support
* the currently implemented transformers, but the idea is to
* let transformers to produce diff_filepairs any way they want,
* and filter and clean them up here before producing the output.
*/
struct diff_filespec *one, *two;
if (DIFF_PAIR_UNMERGED(p))
return 0; /* unmerged is interesting */
one = p->one;
two = p->two;
/* deletion, addition, mode or type change
* and rename are all interesting.
*/
if (DIFF_FILE_VALID(one) != DIFF_FILE_VALID(two) ||
DIFF_PAIR_MODE_CHANGED(p) ||
strcmp(one->path, two->path))
return 0;
/* both are valid and point at the same path. that is, we are
* dealing with a change.
*/
if (one->sha1_valid && two->sha1_valid &&
!hashcmp(one->sha1, two->sha1))
return 1; /* no change */
if (!one->sha1_valid && !two->sha1_valid)
return 1; /* both look at the same file on the filesystem. */
return 0;
}
static void diff_flush_patch(struct diff_filepair *p, struct diff_options *o)
{
if (diff_unmodified_pair(p))
return;
if ((DIFF_FILE_VALID(p->one) && S_ISDIR(p->one->mode)) ||
(DIFF_FILE_VALID(p->two) && S_ISDIR(p->two->mode)))
return; /* no tree diffs in patch format */
run_diff(p, o);
}
static void diff_flush_stat(struct diff_filepair *p, struct diff_options *o,
struct diffstat_t *diffstat)
{
if (diff_unmodified_pair(p))
return;
if ((DIFF_FILE_VALID(p->one) && S_ISDIR(p->one->mode)) ||
(DIFF_FILE_VALID(p->two) && S_ISDIR(p->two->mode)))
return; /* no tree diffs in patch format */
run_diffstat(p, o, diffstat);
}
static void diff_flush_checkdiff(struct diff_filepair *p,
struct diff_options *o)
{
if (diff_unmodified_pair(p))
return;
if ((DIFF_FILE_VALID(p->one) && S_ISDIR(p->one->mode)) ||
(DIFF_FILE_VALID(p->two) && S_ISDIR(p->two->mode)))
return; /* no tree diffs in patch format */
run_checkdiff(p, o);
}
int diff_queue_is_empty(void)
{
struct diff_queue_struct *q = &diff_queued_diff;
int i;
for (i = 0; i < q->nr; i++)
if (!diff_unmodified_pair(q->queue[i]))
return 0;
return 1;
}
#if DIFF_DEBUG
void diff_debug_filespec(struct diff_filespec *s, int x, const char *one)
{
fprintf(stderr, "queue[%d] %s (%s) %s %06o %s\n",
x, one ? one : "",
s->path,
DIFF_FILE_VALID(s) ? "valid" : "invalid",
s->mode,
s->sha1_valid ? sha1_to_hex(s->sha1) : "");
fprintf(stderr, "queue[%d] %s size %lu flags %d\n",
x, one ? one : "",
s->size, s->xfrm_flags);
}
void diff_debug_filepair(const struct diff_filepair *p, int i)
{
diff_debug_filespec(p->one, i, "one");
diff_debug_filespec(p->two, i, "two");
fprintf(stderr, "score %d, status %c stays %d broken %d\n",
p->score, p->status ? p->status : '?',
p->source_stays, p->broken_pair);
}
void diff_debug_queue(const char *msg, struct diff_queue_struct *q)
{
int i;
if (msg)
fprintf(stderr, "%s\n", msg);
fprintf(stderr, "q->nr = %d\n", q->nr);
for (i = 0; i < q->nr; i++) {
struct diff_filepair *p = q->queue[i];
diff_debug_filepair(p, i);
}
}
#endif
static void diff_resolve_rename_copy(void)
{
int i, j;
struct diff_filepair *p, *pp;
struct diff_queue_struct *q = &diff_queued_diff;
diff_debug_queue("resolve-rename-copy", q);
for (i = 0; i < q->nr; i++) {
p = q->queue[i];
p->status = 0; /* undecided */
if (DIFF_PAIR_UNMERGED(p))
p->status = DIFF_STATUS_UNMERGED;
else if (!DIFF_FILE_VALID(p->one))
p->status = DIFF_STATUS_ADDED;
else if (!DIFF_FILE_VALID(p->two))
p->status = DIFF_STATUS_DELETED;
else if (DIFF_PAIR_TYPE_CHANGED(p))
p->status = DIFF_STATUS_TYPE_CHANGED;
/* from this point on, we are dealing with a pair
* whose both sides are valid and of the same type, i.e.
* either in-place edit or rename/copy edit.
*/
else if (DIFF_PAIR_RENAME(p)) {
if (p->source_stays) {
p->status = DIFF_STATUS_COPIED;
continue;
}
/* See if there is some other filepair that
* copies from the same source as us. If so
* we are a copy. Otherwise we are either a
* copy if the path stays, or a rename if it
* does not, but we already handled "stays" case.
*/
for (j = i + 1; j < q->nr; j++) {
pp = q->queue[j];
if (strcmp(pp->one->path, p->one->path))
continue; /* not us */
if (!DIFF_PAIR_RENAME(pp))
continue; /* not a rename/copy */
/* pp is a rename/copy from the same source */
p->status = DIFF_STATUS_COPIED;
break;
}
if (!p->status)
p->status = DIFF_STATUS_RENAMED;
}
else if (hashcmp(p->one->sha1, p->two->sha1) ||
p->one->mode != p->two->mode)
p->status = DIFF_STATUS_MODIFIED;
else {
/* This is a "no-change" entry and should not
* happen anymore, but prepare for broken callers.
*/
error("feeding unmodified %s to diffcore",
p->one->path);
p->status = DIFF_STATUS_UNKNOWN;
}
}
diff_debug_queue("resolve-rename-copy done", q);
}
static int check_pair_status(struct diff_filepair *p)
{
switch (p->status) {
case DIFF_STATUS_UNKNOWN:
return 0;
case 0:
die("internal error in diff-resolve-rename-copy");
default:
return 1;
}
}
static void flush_one_pair(struct diff_filepair *p, struct diff_options *opt)
{
int fmt = opt->output_format;
if (fmt & DIFF_FORMAT_CHECKDIFF)
diff_flush_checkdiff(p, opt);
else if (fmt & (DIFF_FORMAT_RAW | DIFF_FORMAT_NAME_STATUS))
diff_flush_raw(p, opt);
else if (fmt & DIFF_FORMAT_NAME)
diff_flush_name(p, opt->line_termination);
}
static void show_file_mode_name(const char *newdelete, struct diff_filespec *fs)
{
if (fs->mode)
printf(" %s mode %06o %s\n", newdelete, fs->mode, fs->path);
else
printf(" %s %s\n", newdelete, fs->path);
}
static void show_mode_change(struct diff_filepair *p, int show_name)
{
if (p->one->mode && p->two->mode && p->one->mode != p->two->mode) {
if (show_name)
printf(" mode change %06o => %06o %s\n",
p->one->mode, p->two->mode, p->two->path);
else
printf(" mode change %06o => %06o\n",
p->one->mode, p->two->mode);
}
}
static void show_rename_copy(const char *renamecopy, struct diff_filepair *p)
{
const char *old, *new;
/* Find common prefix */
old = p->one->path;
new = p->two->path;
while (1) {
const char *slash_old, *slash_new;
slash_old = strchr(old, '/');
slash_new = strchr(new, '/');
if (!slash_old ||
!slash_new ||
slash_old - old != slash_new - new ||
memcmp(old, new, slash_new - new))
break;
old = slash_old + 1;
new = slash_new + 1;
}
/* p->one->path thru old is the common prefix, and old and new
* through the end of names are renames
*/
if (old != p->one->path)
printf(" %s %.*s{%s => %s} (%d%%)\n", renamecopy,
(int)(old - p->one->path), p->one->path,
old, new, (int)(0.5 + p->score * 100.0/MAX_SCORE));
else
printf(" %s %s => %s (%d%%)\n", renamecopy,
p->one->path, p->two->path,
(int)(0.5 + p->score * 100.0/MAX_SCORE));
show_mode_change(p, 0);
}
static void diff_summary(struct diff_filepair *p)
{
switch(p->status) {
case DIFF_STATUS_DELETED:
show_file_mode_name("delete", p->one);
break;
case DIFF_STATUS_ADDED:
show_file_mode_name("create", p->two);
break;
case DIFF_STATUS_COPIED:
show_rename_copy("copy", p);
break;
case DIFF_STATUS_RENAMED:
show_rename_copy("rename", p);
break;
default:
if (p->score) {
printf(" rewrite %s (%d%%)\n", p->two->path,
(int)(0.5 + p->score * 100.0/MAX_SCORE));
show_mode_change(p, 0);
} else show_mode_change(p, 1);
break;
}
}
struct patch_id_t {
struct xdiff_emit_state xm;
SHA_CTX *ctx;
int patchlen;
};
static int remove_space(char *line, int len)
{
int i;
char *dst = line;
unsigned char c;
for (i = 0; i < len; i++)
if (!isspace((c = line[i])))
*dst++ = c;
return dst - line;
}
static void patch_id_consume(void *priv, char *line, unsigned long len)
{
struct patch_id_t *data = priv;
int new_len;
/* Ignore line numbers when computing the SHA1 of the patch */
if (!strncmp(line, "@@ -", 4))
return;
new_len = remove_space(line, len);
SHA1_Update(data->ctx, line, new_len);
data->patchlen += new_len;
}
/* returns 0 upon success, and writes result into sha1 */
static int diff_get_patch_id(struct diff_options *options, unsigned char *sha1)
{
struct diff_queue_struct *q = &diff_queued_diff;
int i;
SHA_CTX ctx;
struct patch_id_t data;
char buffer[PATH_MAX * 4 + 20];
SHA1_Init(&ctx);
memset(&data, 0, sizeof(struct patch_id_t));
data.ctx = &ctx;
data.xm.consume = patch_id_consume;
for (i = 0; i < q->nr; i++) {
xpparam_t xpp;
xdemitconf_t xecfg;
xdemitcb_t ecb;
mmfile_t mf1, mf2;
struct diff_filepair *p = q->queue[i];
int len1, len2;
if (p->status == 0)
return error("internal diff status error");
if (p->status == DIFF_STATUS_UNKNOWN)
continue;
if (diff_unmodified_pair(p))
continue;
if ((DIFF_FILE_VALID(p->one) && S_ISDIR(p->one->mode)) ||
(DIFF_FILE_VALID(p->two) && S_ISDIR(p->two->mode)))
continue;
if (DIFF_PAIR_UNMERGED(p))
continue;
diff_fill_sha1_info(p->one);
diff_fill_sha1_info(p->two);
if (fill_mmfile(&mf1, p->one) < 0 ||
fill_mmfile(&mf2, p->two) < 0)
return error("unable to read files to diff");
/* Maybe hash p->two? into the patch id? */
if (mmfile_is_binary(&mf2))
continue;
len1 = remove_space(p->one->path, strlen(p->one->path));
len2 = remove_space(p->two->path, strlen(p->two->path));
if (p->one->mode == 0)
len1 = snprintf(buffer, sizeof(buffer),
"diff--gita/%.*sb/%.*s"
"newfilemode%06o"
"---/dev/null"
"+++b/%.*s",
len1, p->one->path,
len2, p->two->path,
p->two->mode,
len2, p->two->path);
else if (p->two->mode == 0)
len1 = snprintf(buffer, sizeof(buffer),
"diff--gita/%.*sb/%.*s"
"deletedfilemode%06o"
"---a/%.*s"
"+++/dev/null",
len1, p->one->path,
len2, p->two->path,
p->one->mode,
len1, p->one->path);
else
len1 = snprintf(buffer, sizeof(buffer),
"diff--gita/%.*sb/%.*s"
"---a/%.*s"
"+++b/%.*s",
len1, p->one->path,
len2, p->two->path,
len1, p->one->path,
len2, p->two->path);
SHA1_Update(&ctx, buffer, len1);
xpp.flags = XDF_NEED_MINIMAL;
xecfg.ctxlen = 3;
xecfg.flags = XDL_EMIT_FUNCNAMES;
ecb.outf = xdiff_outf;
ecb.priv = &data;
xdl_diff(&mf1, &mf2, &xpp, &xecfg, &ecb);
}
SHA1_Final(sha1, &ctx);
return 0;
}
int diff_flush_patch_id(struct diff_options *options, unsigned char *sha1)
{
struct diff_queue_struct *q = &diff_queued_diff;
int i;
int result = diff_get_patch_id(options, sha1);
for (i = 0; i < q->nr; i++)
diff_free_filepair(q->queue[i]);
free(q->queue);
q->queue = NULL;
q->nr = q->alloc = 0;
return result;
}
static int is_summary_empty(const struct diff_queue_struct *q)
{
int i;
for (i = 0; i < q->nr; i++) {
const struct diff_filepair *p = q->queue[i];
switch (p->status) {
case DIFF_STATUS_DELETED:
case DIFF_STATUS_ADDED:
case DIFF_STATUS_COPIED:
case DIFF_STATUS_RENAMED:
return 0;
default:
if (p->score)
return 0;
if (p->one->mode && p->two->mode &&
p->one->mode != p->two->mode)
return 0;
break;
}
}
return 1;
}
void diff_flush(struct diff_options *options)
{
struct diff_queue_struct *q = &diff_queued_diff;
int i, output_format = options->output_format;
int separator = 0;
/*
* Order: raw, stat, summary, patch
* or: name/name-status/checkdiff (other bits clear)
*/
if (!q->nr)
goto free_queue;
if (output_format & (DIFF_FORMAT_RAW |
DIFF_FORMAT_NAME |
DIFF_FORMAT_NAME_STATUS |
DIFF_FORMAT_CHECKDIFF)) {
for (i = 0; i < q->nr; i++) {
struct diff_filepair *p = q->queue[i];
if (check_pair_status(p))
flush_one_pair(p, options);
}
separator++;
}
if (output_format & (DIFF_FORMAT_DIFFSTAT|DIFF_FORMAT_SHORTSTAT|DIFF_FORMAT_NUMSTAT)) {
struct diffstat_t diffstat;
memset(&diffstat, 0, sizeof(struct diffstat_t));
diffstat.xm.consume = diffstat_consume;
for (i = 0; i < q->nr; i++) {
struct diff_filepair *p = q->queue[i];
if (check_pair_status(p))
diff_flush_stat(p, options, &diffstat);
}
if (output_format & DIFF_FORMAT_NUMSTAT)
show_numstat(&diffstat, options);
if (output_format & DIFF_FORMAT_DIFFSTAT)
show_stats(&diffstat, options);
else if (output_format & DIFF_FORMAT_SHORTSTAT)
show_shortstats(&diffstat);
separator++;
}
if (output_format & DIFF_FORMAT_SUMMARY && !is_summary_empty(q)) {
for (i = 0; i < q->nr; i++)
diff_summary(q->queue[i]);
separator++;
}
if (output_format & DIFF_FORMAT_PATCH) {
if (separator) {
if (options->stat_sep) {
/* attach patch instead of inline */
fputs(options->stat_sep, stdout);
} else {
putchar(options->line_termination);
}
}
for (i = 0; i < q->nr; i++) {
struct diff_filepair *p = q->queue[i];
if (check_pair_status(p))
diff_flush_patch(p, options);
}
}
if (output_format & DIFF_FORMAT_CALLBACK)
options->format_callback(q, options, options->format_callback_data);
for (i = 0; i < q->nr; i++)
diff_free_filepair(q->queue[i]);
free_queue:
free(q->queue);
q->queue = NULL;
q->nr = q->alloc = 0;
}
static void diffcore_apply_filter(const char *filter)
{
int i;
struct diff_queue_struct *q = &diff_queued_diff;
struct diff_queue_struct outq;
outq.queue = NULL;
outq.nr = outq.alloc = 0;
if (!filter)
return;
if (strchr(filter, DIFF_STATUS_FILTER_AON)) {
int found;
for (i = found = 0; !found && i < q->nr; i++) {
struct diff_filepair *p = q->queue[i];
if (((p->status == DIFF_STATUS_MODIFIED) &&
((p->score &&
strchr(filter, DIFF_STATUS_FILTER_BROKEN)) ||
(!p->score &&
strchr(filter, DIFF_STATUS_MODIFIED)))) ||
((p->status != DIFF_STATUS_MODIFIED) &&
strchr(filter, p->status)))
found++;
}
if (found)
return;
/* otherwise we will clear the whole queue
* by copying the empty outq at the end of this
* function, but first clear the current entries
* in the queue.
*/
for (i = 0; i < q->nr; i++)
diff_free_filepair(q->queue[i]);
}
else {
/* Only the matching ones */
for (i = 0; i < q->nr; i++) {
struct diff_filepair *p = q->queue[i];
if (((p->status == DIFF_STATUS_MODIFIED) &&
((p->score &&
strchr(filter, DIFF_STATUS_FILTER_BROKEN)) ||
(!p->score &&
strchr(filter, DIFF_STATUS_MODIFIED)))) ||
((p->status != DIFF_STATUS_MODIFIED) &&
strchr(filter, p->status)))
diff_q(&outq, p);
else
diff_free_filepair(p);
}
}
free(q->queue);
*q = outq;
}
void diffcore_std(struct diff_options *options)
{
if (options->break_opt != -1)
diffcore_break(options->break_opt);
if (options->detect_rename)
diffcore_rename(options);
if (options->break_opt != -1)
diffcore_merge_broken();
if (options->pickaxe)
diffcore_pickaxe(options->pickaxe, options->pickaxe_opts);
if (options->orderfile)
diffcore_order(options->orderfile);
diff_resolve_rename_copy();
diffcore_apply_filter(options->filter);
}
void diffcore_std_no_resolve(struct diff_options *options)
{
if (options->pickaxe)
diffcore_pickaxe(options->pickaxe, options->pickaxe_opts);
if (options->orderfile)
diffcore_order(options->orderfile);
diffcore_apply_filter(options->filter);
}
void diff_addremove(struct diff_options *options,
int addremove, unsigned mode,
const unsigned char *sha1,
const char *base, const char *path)
{
char concatpath[PATH_MAX];
struct diff_filespec *one, *two;
/* This may look odd, but it is a preparation for
* feeding "there are unchanged files which should
* not produce diffs, but when you are doing copy
* detection you would need them, so here they are"
* entries to the diff-core. They will be prefixed
* with something like '=' or '*' (I haven't decided
* which but should not make any difference).
* Feeding the same new and old to diff_change()
* also has the same effect.
* Before the final output happens, they are pruned after
* merged into rename/copy pairs as appropriate.
*/
if (options->reverse_diff)
addremove = (addremove == '+' ? '-' :
addremove == '-' ? '+' : addremove);
if (!path) path = "";
sprintf(concatpath, "%s%s", base, path);
one = alloc_filespec(concatpath);
two = alloc_filespec(concatpath);
if (addremove != '+')
fill_filespec(one, sha1, mode);
if (addremove != '-')
fill_filespec(two, sha1, mode);
diff_queue(&diff_queued_diff, one, two);
}
void diff_change(struct diff_options *options,
unsigned old_mode, unsigned new_mode,
const unsigned char *old_sha1,
const unsigned char *new_sha1,
const char *base, const char *path)
{
char concatpath[PATH_MAX];
struct diff_filespec *one, *two;
if (options->reverse_diff) {
unsigned tmp;
const unsigned char *tmp_c;
tmp = old_mode; old_mode = new_mode; new_mode = tmp;
tmp_c = old_sha1; old_sha1 = new_sha1; new_sha1 = tmp_c;
}
if (!path) path = "";
sprintf(concatpath, "%s%s", base, path);
one = alloc_filespec(concatpath);
two = alloc_filespec(concatpath);
fill_filespec(one, old_sha1, old_mode);
fill_filespec(two, new_sha1, new_mode);
diff_queue(&diff_queued_diff, one, two);
}
void diff_unmerge(struct diff_options *options,
const char *path)
{
struct diff_filespec *one, *two;
one = alloc_filespec(path);
two = alloc_filespec(path);
diff_queue(&diff_queued_diff, one, two);
}