git-commit-vandalism/trace2.h

510 lines
18 KiB
C
Raw Normal View History

#ifndef TRACE2_H
#define TRACE2_H
/**
* The Trace2 API can be used to print debug, performance, and telemetry
* information to stderr or a file. The Trace2 feature is inactive unless
* explicitly enabled by enabling one or more Trace2 Targets.
*
* The Trace2 API is intended to replace the existing (Trace1)
* printf-style tracing provided by the existing `GIT_TRACE` and
* `GIT_TRACE_PERFORMANCE` facilities. During initial implementation,
* Trace2 and Trace1 may operate in parallel.
*
* The Trace2 API defines a set of high-level messages with known fields,
* such as (`start`: `argv`) and (`exit`: {`exit-code`, `elapsed-time`}).
*
* Trace2 instrumentation throughout the Git code base sends Trace2
* messages to the enabled Trace2 Targets. Targets transform these
* messages content into purpose-specific formats and write events to
* their data streams. In this manner, the Trace2 API can drive
* many different types of analysis.
*
* Targets are defined using a VTable allowing easy extension to other
* formats in the future. This might be used to define a binary format,
* for example.
*
* Trace2 is controlled using `trace2.*` config values in the system and
* global config files and `GIT_TRACE2*` environment variables. Trace2 does
* not read from repo local or worktree config files or respect `-c`
* command line config settings.
*
* For more info about: trace2 targets, conventions for public functions and
* macros, trace2 target formats and examples on trace2 API usage refer to
* Documentation/technical/api-trace2.txt
*
*/
struct child_process;
struct repository;
struct json_writer;
/*
* The public TRACE2 routines are grouped into the following groups:
*
* [] trace2_initialize -- initialization.
* [] trace2_cmd_* -- emit command/control messages.
* [] trace2_child* -- emit child start/stop messages.
* [] trace2_exec* -- emit exec start/stop messages.
* [] trace2_thread* -- emit thread start/stop messages.
* [] trace2_def* -- emit definition/parameter mesasges.
* [] trace2_region* -- emit region nesting messages.
* [] trace2_data* -- emit region/thread/repo data messages.
* [] trace2_printf* -- legacy trace[1] messages.
*/
/*
* Initialize the TRACE2 clock and do nothing else, in particular
* no mallocs, no system inspection, and no environment inspection.
*
* This should be called at the very top of main() to capture the
* process start time. This is intended to reduce chicken-n-egg
* bootstrap pressure.
*
* It is safe to call this more than once. This allows capturing
* absolute startup costs on Windows which uses a little trickery
* to do setup work before common-main.c:main() is called.
*
* The main trace2_initialize_fl() may be called a little later
* after more infrastructure is established.
*/
void trace2_initialize_clock(void);
/*
* Initialize TRACE2 tracing facility if any of the builtin TRACE2
* targets are enabled in the system config or the environment.
* This includes setting up the Trace2 thread local storage (TLS).
* Emits a 'version' message containing the version of git
* and the Trace2 protocol.
*
* This function should be called from `main()` as early as possible in
* the life of the process after essential process initialization.
*
* Cleanup/Termination is handled automatically by a registered
* atexit() routine.
*/
void trace2_initialize_fl(const char *file, int line);
#define trace2_initialize() trace2_initialize_fl(__FILE__, __LINE__)
/*
* Return 1 if trace2 is enabled (at least one target is active).
*/
int trace2_is_enabled(void);
/*
* Emit a 'start' event with the original (unmodified) argv.
*/
void trace2_cmd_start_fl(const char *file, int line, const char **argv);
#define trace2_cmd_start(argv) trace2_cmd_start_fl(__FILE__, __LINE__, (argv))
/*
* Emit an 'exit' event.
*
* Write the exit-code that will be passed to exit() or returned
* from main().
*
* Use this prior to actually calling exit().
* See "#define exit()" in git-compat-util.h
*/
int trace2_cmd_exit_fl(const char *file, int line, int code);
#define trace2_cmd_exit(code) (trace2_cmd_exit_fl(__FILE__, __LINE__, (code)))
/*
* Emit an 'error' event.
*
* Write an error message to the TRACE2 targets.
*/
void trace2_cmd_error_va_fl(const char *file, int line, const char *fmt,
va_list ap);
#define trace2_cmd_error_va(fmt, ap) \
trace2_cmd_error_va_fl(__FILE__, __LINE__, (fmt), (ap))
/*
* Emit a 'pathname' event with the canonical pathname of the current process
* This gives post-processors a simple field to identify the command without
* having to parse the argv. For example, to distinguish invocations from
* installed versus debug executables.
*/
void trace2_cmd_path_fl(const char *file, int line, const char *pathname);
#define trace2_cmd_path(p) trace2_cmd_path_fl(__FILE__, __LINE__, (p))
tr2: log parent process name It can be useful to tell who invoked Git - was it invoked manually by a user via CLI or script? By an IDE? In some cases - like 'repo' tool - we can influence the source code and set the GIT_TRACE2_PARENT_SID environment variable from the caller process. In 'repo''s case, that parent SID is manipulated to include the string "repo", which means we can positively identify when Git was invoked by 'repo' tool. However, identifying parents that way requires both that we know which tools invoke Git and that we have the ability to modify the source code of those tools. It cannot scale to keep up with the various IDEs and wrappers which use Git, most of which we don't know about. Learning which tools and wrappers invoke Git, and how, would give us insight to decide where to improve Git's usability and performance. Unfortunately, there's no cross-platform reliable way to gather the name of the parent process. If procfs is present, we can use that; otherwise we will need to discover the name another way. However, the process ID should be sufficient to look up the process name on most platforms, so that code may be shareable. Git for Windows gathers similar information and logs it as a "data_json" event. However, since "data_json" has a variable format, it is difficult to parse effectively in some languages; instead, let's pursue a dedicated "cmd_ancestry" event to record information about the ancestry of the current process and a consistent, parseable way. Git for Windows also gathers information about more than one generation of parent. In Linux further ancestry info can be gathered with procfs, but it's unwieldy to do so. In the interest of later moving Git for Windows ancestry logging to the 'cmd_ancestry' event, and in the interest of later adding more ancestry to the Linux implementation - or of adding this functionality to other platforms which have an easier time walking the process tree - let's make 'cmd_ancestry' accept an array of parentage. Signed-off-by: Emily Shaffer <emilyshaffer@google.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-07-22 03:27:07 +02:00
/*
* Emit an 'ancestry' event with the process name of the current process's
* parent process.
* This gives post-processors a way to determine what invoked the command and
* learn more about usage patterns.
*/
void trace2_cmd_ancestry_fl(const char *file, int line, const char **parent_names);
#define trace2_cmd_ancestry(v) trace2_cmd_ancestry_fl(__FILE__, __LINE__, (v))
/*
* Emit a 'cmd_name' event with the canonical name of the command.
* This gives post-processors a simple field to identify the command
* without having to parse the argv.
*/
void trace2_cmd_name_fl(const char *file, int line, const char *name);
#define trace2_cmd_name(v) trace2_cmd_name_fl(__FILE__, __LINE__, (v))
/*
* Emit a 'cmd_mode' event to further describe the command being run.
* For example, "checkout" can checkout a single file or can checkout a
* different branch. This gives post-processors a simple field to compare
* equivalent commands without having to parse the argv.
*/
void trace2_cmd_mode_fl(const char *file, int line, const char *mode);
#define trace2_cmd_mode(sv) trace2_cmd_mode_fl(__FILE__, __LINE__, (sv))
/*
* Emits an "alias" message containing the alias used and the argument
* expansion.
*/
void trace2_cmd_alias_fl(const char *file, int line, const char *alias,
const char **argv);
#define trace2_cmd_alias(alias, argv) \
trace2_cmd_alias_fl(__FILE__, __LINE__, (alias), (argv))
/*
* Emit one or more 'def_param' events for "important" configuration
* settings.
*
* Use the TR2_SYSENV_CFG_PARAM setting to register a comma-separated
* list of patterns configured important. For example:
* git config --system trace2.configParams 'core.*,remote.*.url'
* or:
* GIT_TRACE2_CONFIG_PARAMS=core.*,remote.*.url"
*
* Note: this routine does a read-only iteration on the config data
* (using read_early_config()), so it must not be called until enough
* of the process environment has been established. This includes the
* location of the git and worktree directories, expansion of any "-c"
* and "-C" command line options, and etc.
*/
void trace2_cmd_list_config_fl(const char *file, int line);
#define trace2_cmd_list_config() trace2_cmd_list_config_fl(__FILE__, __LINE__)
/*
* Emit one or more 'def_param' events for "important" environment variables.
*
* Use the TR2_SYSENV_ENV_VARS setting to register a comma-separated list of
* environment variables considered important. For example:
* git config --system trace2.envVars 'GIT_HTTP_USER_AGENT,GIT_CONFIG'
* or:
* GIT_TRACE2_ENV_VARS="GIT_HTTP_USER_AGENT,GIT_CONFIG"
*/
void trace2_cmd_list_env_vars_fl(const char *file, int line);
#define trace2_cmd_list_env_vars() trace2_cmd_list_env_vars_fl(__FILE__, __LINE__)
/*
* Emit a "def_param" event for the given config key/value pair IF
* we consider the key to be "important".
*
* Use this for new/updated config settings created/updated after
* trace2_cmd_list_config() is called.
*/
void trace2_cmd_set_config_fl(const char *file, int line, const char *key,
const char *value);
#define trace2_cmd_set_config(k, v) \
trace2_cmd_set_config_fl(__FILE__, __LINE__, (k), (v))
/**
* Emits a "child_start" message containing the "child-id",
* "child-argv", and "child-classification".
*
* Before calling optionally set "cmd->trace2_child_class" to a string
* describing the type of the child process. For example, "editor" or
* "pager".
*
* This function assigns a unique "child-id" to `cmd->trace2_child_id`.
* This field is used later during the "child_exit" message to associate
* it with the "child_start" message.
*
* This function should be called before spawning the child process.
*/
void trace2_child_start_fl(const char *file, int line,
struct child_process *cmd);
#define trace2_child_start(cmd) trace2_child_start_fl(__FILE__, __LINE__, (cmd))
/**
* Emits a "child_exit" message containing the "child-id",
* the child's elapsed time and exit-code.
*
* The reported elapsed time includes the process creation overhead and
* time spend waiting for it to exit, so it may be slightly longer than
* the time reported by the child itself.
*
* This function should be called after reaping the child process.
*/
void trace2_child_exit_fl(const char *file, int line, struct child_process *cmd,
int child_exit_code);
#define trace2_child_exit(cmd, code) \
trace2_child_exit_fl(__FILE__, __LINE__, (cmd), (code))
/**
* Emit an 'exec' event prior to calling one of exec(), execv(),
* execvp(), and etc. On Unix-derived systems, this will be the
* last event emitted for the current process, unless the exec
* fails. On Windows, exec() behaves like 'child_start' and a
* waitpid(), so additional events may be emitted.
*
* Returns a unique "exec-id". This value is used later
* if the exec() fails and a "exec-result" message is necessary.
*/
int trace2_exec_fl(const char *file, int line, const char *exe,
const char **argv);
#define trace2_exec(exe, argv) trace2_exec_fl(__FILE__, __LINE__, (exe), (argv))
/**
* Emit an 'exec_result' when possible. On Unix-derived systems,
* this should be called after exec() returns (which only happens
* when there is an error starting the new process). On Windows,
* this should be called after the waitpid().
*
* The "exec_id" should be the value returned from trace2_exec().
*/
void trace2_exec_result_fl(const char *file, int line, int exec_id, int code);
#define trace2_exec_result(id, code) \
trace2_exec_result_fl(__FILE__, __LINE__, (id), (code))
/*
* Emit a 'thread_start' event. This must be called from inside the
* thread-proc to set up the trace2 TLS data for the thread.
*
* Thread names should be descriptive, like "preload_index".
* Thread names will be decorated with an instance number automatically.
*/
void trace2_thread_start_fl(const char *file, int line,
const char *thread_name);
#define trace2_thread_start(thread_name) \
trace2_thread_start_fl(__FILE__, __LINE__, (thread_name))
/*
* Emit a 'thread_exit' event. This must be called from inside the
* thread-proc to report thread-specific data and cleanup TLS data
* for the thread.
*/
void trace2_thread_exit_fl(const char *file, int line);
#define trace2_thread_exit() trace2_thread_exit_fl(__FILE__, __LINE__)
/*
* Emits a "def_param" message containing a key/value pair.
*
* This message is intended to report some global aspect of the current
* command, such as a configuration setting or command line switch that
* significantly affects program performance or behavior, such as
* `core.abbrev`, `status.showUntrackedFiles`, or `--no-ahead-behind`.
*/
void trace2_def_param_fl(const char *file, int line, const char *param,
const char *value);
#define trace2_def_param(param, value) \
trace2_def_param_fl(__FILE__, __LINE__, (param), (value))
/*
* Tell trace2 about a newly instantiated repo object and assign
* a trace2-repo-id to be used in subsequent activity events.
*
* Emits a 'worktree' event for this repo instance.
*
* Region and data messages may refer to this repo-id.
*
* The main/top-level repository will have repo-id value 1 (aka "r1").
*
* The repo-id field is in anticipation of future in-proc submodule
* repositories.
*/
void trace2_def_repo_fl(const char *file, int line, struct repository *repo);
#define trace2_def_repo(repo) trace2_def_repo_fl(__FILE__, __LINE__, repo)
/**
* Emit a 'region_enter' event for <category>.<label> with optional
* repo-id and printf message.
*
* This function pushes a new region nesting stack level on the current
* thread and starts a clock for the new stack frame.
*
* The `category` field is an arbitrary category name used to classify
* regions by feature area, such as "status" or "index". At this time
* it is only just printed along with the rest of the message. It may
* be used in the future to filter messages.
*
* The `label` field is an arbitrary label used to describe the activity
* being started, such as "read_recursive" or "do_read_index".
*
* The `repo` field, if set, will be used to get the "repo-id", so that
* recursive operations can be attributed to the correct repository.
*/
void trace2_region_enter_fl(const char *file, int line, const char *category,
const char *label, const struct repository *repo, ...);
#define trace2_region_enter(category, label, repo) \
trace2_region_enter_fl(__FILE__, __LINE__, (category), (label), (repo))
void trace2_region_enter_printf_va_fl(const char *file, int line,
const char *category, const char *label,
const struct repository *repo,
const char *fmt, va_list ap);
#define trace2_region_enter_printf_va(category, label, repo, fmt, ap) \
trace2_region_enter_printf_va_fl(__FILE__, __LINE__, (category), \
(label), (repo), (fmt), (ap))
void trace2_region_enter_printf_fl(const char *file, int line,
const char *category, const char *label,
const struct repository *repo,
const char *fmt, ...);
#ifdef HAVE_VARIADIC_MACROS
#define trace2_region_enter_printf(category, label, repo, ...) \
trace2_region_enter_printf_fl(__FILE__, __LINE__, (category), (label), \
(repo), __VA_ARGS__)
#else
/* clang-format off */
__attribute__((format (region_enter_printf, 4, 5)))
void trace2_region_enter_printf(const char *category, const char *label,
const struct repository *repo, const char *fmt,
...);
/* clang-format on */
#endif
/**
* Emit a 'region_leave' event for <category>.<label> with optional
* repo-id and printf message.
*
* Leave current nesting level and report the elapsed time spent
* in this nesting level.
*
* The `category`, `label`, and `repo` fields are the same as
* trace2_region_enter_fl. The `category` and `label` do not
* need to match the corresponding "region_enter" message,
* but it makes the data stream easier to understand.
*/
void trace2_region_leave_fl(const char *file, int line, const char *category,
const char *label, const struct repository *repo, ...);
#define trace2_region_leave(category, label, repo) \
trace2_region_leave_fl(__FILE__, __LINE__, (category), (label), (repo))
void trace2_region_leave_printf_va_fl(const char *file, int line,
const char *category, const char *label,
const struct repository *repo,
const char *fmt, va_list ap);
#define trace2_region_leave_printf_va(category, label, repo, fmt, ap) \
trace2_region_leave_printf_va_fl(__FILE__, __LINE__, (category), \
(label), (repo), (fmt), (ap))
void trace2_region_leave_printf_fl(const char *file, int line,
const char *category, const char *label,
const struct repository *repo,
const char *fmt, ...);
#ifdef HAVE_VARIADIC_MACROS
#define trace2_region_leave_printf(category, label, repo, ...) \
trace2_region_leave_printf_fl(__FILE__, __LINE__, (category), (label), \
(repo), __VA_ARGS__)
#else
/* clang-format off */
__attribute__((format (region_leave_printf, 4, 5)))
void trace2_region_leave_printf(const char *category, const char *label,
const struct repository *repo, const char *fmt,
...);
/* clang-format on */
#endif
/**
* Emit a key-value pair 'data' event of the form <category>.<key> = <value>.
* This event implicitly contains information about thread, nesting region,
* and optional repo-id.
* This could be used to print the number of files in a directory during
* a multi-threaded recursive tree walk.
*
* On event-based TRACE2 targets, this generates a 'data' event suitable
* for post-processing. On printf-based TRACE2 targets, this is converted
* into a fixed-format printf message.
*/
void trace2_data_string_fl(const char *file, int line, const char *category,
const struct repository *repo, const char *key,
const char *value);
#define trace2_data_string(category, repo, key, value) \
trace2_data_string_fl(__FILE__, __LINE__, (category), (repo), (key), \
(value))
void trace2_data_intmax_fl(const char *file, int line, const char *category,
const struct repository *repo, const char *key,
intmax_t value);
#define trace2_data_intmax(category, repo, key, value) \
trace2_data_intmax_fl(__FILE__, __LINE__, (category), (repo), (key), \
(value))
void trace2_data_json_fl(const char *file, int line, const char *category,
const struct repository *repo, const char *key,
const struct json_writer *jw);
#define trace2_data_json(category, repo, key, value) \
trace2_data_json_fl(__FILE__, __LINE__, (category), (repo), (key), \
(value))
/*
* Emit a 'printf' event.
*
* Write an arbitrary formatted message to the TRACE2 targets. These
* text messages should be considered as human-readable strings without
* any formatting guidelines. Post-processors may choose to ignore
* them.
*/
void trace2_printf_va_fl(const char *file, int line, const char *fmt,
va_list ap);
#define trace2_printf_va(fmt, ap) \
trace2_printf_va_fl(__FILE__, __LINE__, (fmt), (ap))
void trace2_printf_fl(const char *file, int line, const char *fmt, ...);
#ifdef HAVE_VARIADIC_MACROS
#define trace2_printf(...) trace2_printf_fl(__FILE__, __LINE__, __VA_ARGS__)
#else
/* clang-format off */
__attribute__((format (printf, 1, 2)))
void trace2_printf(const char *fmt, ...);
/* clang-format on */
#endif
/*
* Optional platform-specific code to dump information about the
* current and any parent process(es). This is intended to allow
* post-processors to know who spawned this git instance and anything
* else that the platform may be able to tell us about the current process.
*/
enum trace2_process_info_reason {
TRACE2_PROCESS_INFO_STARTUP,
TRACE2_PROCESS_INFO_EXIT,
};
void trace2_collect_process_info(enum trace2_process_info_reason reason);
const char *trace2_session_id(void);
#endif /* TRACE2_H */