Merge branch 'jk/drop-sha1-entry-pos' into maint
Code clean-up. * jk/drop-sha1-entry-pos: sha1-lookup: remove sha1_entry_pos() from header file sha1_file: drop experimental GIT_USE_LOOKUP search
This commit is contained in:
commit
7c9375db0e
216
sha1-lookup.c
216
sha1-lookup.c
@ -99,219 +99,3 @@ int sha1_pos(const unsigned char *sha1, void *table, size_t nr,
|
||||
} while (lo < hi);
|
||||
return -lo-1;
|
||||
}
|
||||
|
||||
/*
|
||||
* Conventional binary search loop looks like this:
|
||||
*
|
||||
* unsigned lo, hi;
|
||||
* do {
|
||||
* unsigned mi = (lo + hi) / 2;
|
||||
* int cmp = "entry pointed at by mi" minus "target";
|
||||
* if (!cmp)
|
||||
* return (mi is the wanted one)
|
||||
* if (cmp > 0)
|
||||
* hi = mi; "mi is larger than target"
|
||||
* else
|
||||
* lo = mi+1; "mi is smaller than target"
|
||||
* } while (lo < hi);
|
||||
*
|
||||
* The invariants are:
|
||||
*
|
||||
* - When entering the loop, lo points at a slot that is never
|
||||
* above the target (it could be at the target), hi points at a
|
||||
* slot that is guaranteed to be above the target (it can never
|
||||
* be at the target).
|
||||
*
|
||||
* - We find a point 'mi' between lo and hi (mi could be the same
|
||||
* as lo, but never can be as same as hi), and check if it hits
|
||||
* the target. There are three cases:
|
||||
*
|
||||
* - if it is a hit, we are happy.
|
||||
*
|
||||
* - if it is strictly higher than the target, we set it to hi,
|
||||
* and repeat the search.
|
||||
*
|
||||
* - if it is strictly lower than the target, we update lo to
|
||||
* one slot after it, because we allow lo to be at the target.
|
||||
*
|
||||
* If the loop exits, there is no matching entry.
|
||||
*
|
||||
* When choosing 'mi', we do not have to take the "middle" but
|
||||
* anywhere in between lo and hi, as long as lo <= mi < hi is
|
||||
* satisfied. When we somehow know that the distance between the
|
||||
* target and lo is much shorter than the target and hi, we could
|
||||
* pick mi that is much closer to lo than the midway.
|
||||
*
|
||||
* Now, we can take advantage of the fact that SHA-1 is a good hash
|
||||
* function, and as long as there are enough entries in the table, we
|
||||
* can expect uniform distribution. An entry that begins with for
|
||||
* example "deadbeef..." is much likely to appear much later than in
|
||||
* the midway of the table. It can reasonably be expected to be near
|
||||
* 87% (222/256) from the top of the table.
|
||||
*
|
||||
* However, we do not want to pick "mi" too precisely. If the entry at
|
||||
* the 87% in the above example turns out to be higher than the target
|
||||
* we are looking for, we would end up narrowing the search space down
|
||||
* only by 13%, instead of 50% we would get if we did a simple binary
|
||||
* search. So we would want to hedge our bets by being less aggressive.
|
||||
*
|
||||
* The table at "table" holds at least "nr" entries of "elem_size"
|
||||
* bytes each. Each entry has the SHA-1 key at "key_offset". The
|
||||
* table is sorted by the SHA-1 key of the entries. The caller wants
|
||||
* to find the entry with "key", and knows that the entry at "lo" is
|
||||
* not higher than the entry it is looking for, and that the entry at
|
||||
* "hi" is higher than the entry it is looking for.
|
||||
*/
|
||||
int sha1_entry_pos(const void *table,
|
||||
size_t elem_size,
|
||||
size_t key_offset,
|
||||
unsigned lo, unsigned hi, unsigned nr,
|
||||
const unsigned char *key)
|
||||
{
|
||||
const unsigned char *base = table;
|
||||
const unsigned char *hi_key, *lo_key;
|
||||
unsigned ofs_0;
|
||||
static int debug_lookup = -1;
|
||||
|
||||
if (debug_lookup < 0)
|
||||
debug_lookup = !!getenv("GIT_DEBUG_LOOKUP");
|
||||
|
||||
if (!nr || lo >= hi)
|
||||
return -1;
|
||||
|
||||
if (nr == hi)
|
||||
hi_key = NULL;
|
||||
else
|
||||
hi_key = base + elem_size * hi + key_offset;
|
||||
lo_key = base + elem_size * lo + key_offset;
|
||||
|
||||
ofs_0 = 0;
|
||||
do {
|
||||
int cmp;
|
||||
unsigned ofs, mi, range;
|
||||
unsigned lov, hiv, kyv;
|
||||
const unsigned char *mi_key;
|
||||
|
||||
range = hi - lo;
|
||||
if (hi_key) {
|
||||
for (ofs = ofs_0; ofs < 20; ofs++)
|
||||
if (lo_key[ofs] != hi_key[ofs])
|
||||
break;
|
||||
ofs_0 = ofs;
|
||||
/*
|
||||
* byte 0 thru (ofs-1) are the same between
|
||||
* lo and hi; ofs is the first byte that is
|
||||
* different.
|
||||
*
|
||||
* If ofs==20, then no bytes are different,
|
||||
* meaning we have entries with duplicate
|
||||
* keys. We know that we are in a solid run
|
||||
* of this entry (because the entries are
|
||||
* sorted, and our lo and hi are the same,
|
||||
* there can be nothing but this single key
|
||||
* in between). So we can stop the search.
|
||||
* Either one of these entries is it (and
|
||||
* we do not care which), or we do not have
|
||||
* it.
|
||||
*
|
||||
* Furthermore, we know that one of our
|
||||
* endpoints must be the edge of the run of
|
||||
* duplicates. For example, given this
|
||||
* sequence:
|
||||
*
|
||||
* idx 0 1 2 3 4 5
|
||||
* key A C C C C D
|
||||
*
|
||||
* If we are searching for "B", we might
|
||||
* hit the duplicate run at lo=1, hi=3
|
||||
* (e.g., by first mi=3, then mi=0). But we
|
||||
* can never have lo > 1, because B < C.
|
||||
* That is, if our key is less than the
|
||||
* run, we know that "lo" is the edge, but
|
||||
* we can say nothing of "hi". Similarly,
|
||||
* if our key is greater than the run, we
|
||||
* know that "hi" is the edge, but we can
|
||||
* say nothing of "lo".
|
||||
*
|
||||
* Therefore if we do not find it, we also
|
||||
* know where it would go if it did exist:
|
||||
* just on the far side of the edge that we
|
||||
* know about.
|
||||
*/
|
||||
if (ofs == 20) {
|
||||
mi = lo;
|
||||
mi_key = base + elem_size * mi + key_offset;
|
||||
cmp = memcmp(mi_key, key, 20);
|
||||
if (!cmp)
|
||||
return mi;
|
||||
if (cmp < 0)
|
||||
return -1 - hi;
|
||||
else
|
||||
return -1 - lo;
|
||||
}
|
||||
|
||||
hiv = hi_key[ofs_0];
|
||||
if (ofs_0 < 19)
|
||||
hiv = (hiv << 8) | hi_key[ofs_0+1];
|
||||
} else {
|
||||
hiv = 256;
|
||||
if (ofs_0 < 19)
|
||||
hiv <<= 8;
|
||||
}
|
||||
lov = lo_key[ofs_0];
|
||||
kyv = key[ofs_0];
|
||||
if (ofs_0 < 19) {
|
||||
lov = (lov << 8) | lo_key[ofs_0+1];
|
||||
kyv = (kyv << 8) | key[ofs_0+1];
|
||||
}
|
||||
assert(lov < hiv);
|
||||
|
||||
if (kyv < lov)
|
||||
return -1 - lo;
|
||||
if (hiv < kyv)
|
||||
return -1 - hi;
|
||||
|
||||
/*
|
||||
* Even if we know the target is much closer to 'hi'
|
||||
* than 'lo', if we pick too precisely and overshoot
|
||||
* (e.g. when we know 'mi' is closer to 'hi' than to
|
||||
* 'lo', pick 'mi' that is higher than the target), we
|
||||
* end up narrowing the search space by a smaller
|
||||
* amount (i.e. the distance between 'mi' and 'hi')
|
||||
* than what we would have (i.e. about half of 'lo'
|
||||
* and 'hi'). Hedge our bets to pick 'mi' less
|
||||
* aggressively, i.e. make 'mi' a bit closer to the
|
||||
* middle than we would otherwise pick.
|
||||
*/
|
||||
kyv = (kyv * 6 + lov + hiv) / 8;
|
||||
if (lov < hiv - 1) {
|
||||
if (kyv == lov)
|
||||
kyv++;
|
||||
else if (kyv == hiv)
|
||||
kyv--;
|
||||
}
|
||||
mi = (range - 1) * (kyv - lov) / (hiv - lov) + lo;
|
||||
|
||||
if (debug_lookup) {
|
||||
printf("lo %u hi %u rg %u mi %u ", lo, hi, range, mi);
|
||||
printf("ofs %u lov %x, hiv %x, kyv %x\n",
|
||||
ofs_0, lov, hiv, kyv);
|
||||
}
|
||||
if (!(lo <= mi && mi < hi))
|
||||
die("assertion failure lo %u mi %u hi %u %s",
|
||||
lo, mi, hi, sha1_to_hex(key));
|
||||
|
||||
mi_key = base + elem_size * mi + key_offset;
|
||||
cmp = memcmp(mi_key + ofs_0, key + ofs_0, 20 - ofs_0);
|
||||
if (!cmp)
|
||||
return mi;
|
||||
if (cmp > 0) {
|
||||
hi = mi;
|
||||
hi_key = mi_key;
|
||||
} else {
|
||||
lo = mi + 1;
|
||||
lo_key = mi_key + elem_size;
|
||||
}
|
||||
} while (lo < hi);
|
||||
return -lo-1;
|
||||
}
|
||||
|
@ -7,10 +7,4 @@ extern int sha1_pos(const unsigned char *sha1,
|
||||
void *table,
|
||||
size_t nr,
|
||||
sha1_access_fn fn);
|
||||
|
||||
extern int sha1_entry_pos(const void *table,
|
||||
size_t elem_size,
|
||||
size_t key_offset,
|
||||
unsigned lo, unsigned hi, unsigned nr,
|
||||
const unsigned char *key);
|
||||
#endif
|
||||
|
11
sha1_file.c
11
sha1_file.c
@ -2761,7 +2761,6 @@ off_t find_pack_entry_one(const unsigned char *sha1,
|
||||
const uint32_t *level1_ofs = p->index_data;
|
||||
const unsigned char *index = p->index_data;
|
||||
unsigned hi, lo, stride;
|
||||
static int use_lookup = -1;
|
||||
static int debug_lookup = -1;
|
||||
|
||||
if (debug_lookup < 0)
|
||||
@ -2791,16 +2790,6 @@ off_t find_pack_entry_one(const unsigned char *sha1,
|
||||
printf("%02x%02x%02x... lo %u hi %u nr %"PRIu32"\n",
|
||||
sha1[0], sha1[1], sha1[2], lo, hi, p->num_objects);
|
||||
|
||||
if (use_lookup < 0)
|
||||
use_lookup = !!getenv("GIT_USE_LOOKUP");
|
||||
if (use_lookup) {
|
||||
int pos = sha1_entry_pos(index, stride, 0,
|
||||
lo, hi, p->num_objects, sha1);
|
||||
if (pos < 0)
|
||||
return 0;
|
||||
return nth_packed_object_offset(p, pos);
|
||||
}
|
||||
|
||||
while (lo < hi) {
|
||||
unsigned mi = (lo + hi) / 2;
|
||||
int cmp = hashcmp(index + mi * stride, sha1);
|
||||
|
@ -56,20 +56,11 @@ test_expect_success 'create batch-check test vectors' '
|
||||
EOF
|
||||
'
|
||||
|
||||
test_expect_success 'lookup in duplicated pack (binary search)' '
|
||||
test_expect_success 'lookup in duplicated pack' '
|
||||
git cat-file --batch-check <input >actual &&
|
||||
test_cmp expect actual
|
||||
'
|
||||
|
||||
test_expect_success 'lookup in duplicated pack (GIT_USE_LOOKUP)' '
|
||||
(
|
||||
GIT_USE_LOOKUP=1 &&
|
||||
export GIT_USE_LOOKUP &&
|
||||
git cat-file --batch-check <input >actual
|
||||
) &&
|
||||
test_cmp expect actual
|
||||
'
|
||||
|
||||
test_expect_success 'index-pack can reject packs with duplicates' '
|
||||
clear_packs &&
|
||||
create_pack dups.pack 2 &&
|
||||
|
@ -99,7 +99,6 @@ unset VISUAL EMAIL LANGUAGE COLUMNS $("$PERL_PATH" -e '
|
||||
my $ok = join("|", qw(
|
||||
TRACE
|
||||
DEBUG
|
||||
USE_LOOKUP
|
||||
TEST
|
||||
.*_TEST
|
||||
PROVE
|
||||
|
Loading…
Reference in New Issue
Block a user