Move estimate_bisect_steps to libgit.a
This function is used by bisect.c, part of libgit.a while estimate_bisect_steps stays in builtin/rev-list.c. Move it to bisect.a so we won't have undefine reference if a standalone program that uses libgit.a happens to pull it in. Signed-off-by: Nguyễn Thái Ngọc Duy <pclouds@gmail.com> Signed-off-by: Jeff King <peff@peff.net>
This commit is contained in:
parent
db699a8a1f
commit
c43cb38612
38
bisect.c
38
bisect.c
@ -956,3 +956,41 @@ int bisect_next_all(const char *prefix, int no_checkout)
|
||||
return bisect_checkout(bisect_rev_hex, no_checkout);
|
||||
}
|
||||
|
||||
static inline int log2i(int n)
|
||||
{
|
||||
int log2 = 0;
|
||||
|
||||
for (; n > 1; n >>= 1)
|
||||
log2++;
|
||||
|
||||
return log2;
|
||||
}
|
||||
|
||||
static inline int exp2i(int n)
|
||||
{
|
||||
return 1 << n;
|
||||
}
|
||||
|
||||
/*
|
||||
* Estimate the number of bisect steps left (after the current step)
|
||||
*
|
||||
* For any x between 0 included and 2^n excluded, the probability for
|
||||
* n - 1 steps left looks like:
|
||||
*
|
||||
* P(2^n + x) == (2^n - x) / (2^n + x)
|
||||
*
|
||||
* and P(2^n + x) < 0.5 means 2^n < 3x
|
||||
*/
|
||||
int estimate_bisect_steps(int all)
|
||||
{
|
||||
int n, x, e;
|
||||
|
||||
if (all < 3)
|
||||
return 0;
|
||||
|
||||
n = log2i(all);
|
||||
e = exp2i(n);
|
||||
x = all - e;
|
||||
|
||||
return (e < 3 * x) ? n : n - 1;
|
||||
}
|
||||
|
@ -201,45 +201,6 @@ static void show_edge(struct commit *commit)
|
||||
printf("-%s\n", sha1_to_hex(commit->object.sha1));
|
||||
}
|
||||
|
||||
static inline int log2i(int n)
|
||||
{
|
||||
int log2 = 0;
|
||||
|
||||
for (; n > 1; n >>= 1)
|
||||
log2++;
|
||||
|
||||
return log2;
|
||||
}
|
||||
|
||||
static inline int exp2i(int n)
|
||||
{
|
||||
return 1 << n;
|
||||
}
|
||||
|
||||
/*
|
||||
* Estimate the number of bisect steps left (after the current step)
|
||||
*
|
||||
* For any x between 0 included and 2^n excluded, the probability for
|
||||
* n - 1 steps left looks like:
|
||||
*
|
||||
* P(2^n + x) == (2^n - x) / (2^n + x)
|
||||
*
|
||||
* and P(2^n + x) < 0.5 means 2^n < 3x
|
||||
*/
|
||||
int estimate_bisect_steps(int all)
|
||||
{
|
||||
int n, x, e;
|
||||
|
||||
if (all < 3)
|
||||
return 0;
|
||||
|
||||
n = log2i(all);
|
||||
e = exp2i(n);
|
||||
x = all - e;
|
||||
|
||||
return (e < 3 * x) ? n : n - 1;
|
||||
}
|
||||
|
||||
void print_commit_list(struct commit_list *list,
|
||||
const char *format_cur,
|
||||
const char *format_last)
|
||||
|
Loading…
Reference in New Issue
Block a user