Refactor notes code to concatenate multiple notes annotating the same object

Currently, having multiple notes referring to the same commit from various
locations in the notes tree is strongly discouraged, since only one of those
notes will be parsed and shown.

This patch teaches the notes code to _concatenate_ multiple notes that
annotate the same commit. Notes are concatenated by creating a new blob
object containing the concatenation of the notes in question, and
replacing them with the concatenated note in the internal notes tree
structure.

Getting the concatenation right requires being more proactive in unpacking
subtree entries in the internal notes tree structure, so that we don't return
a note prematurely (i.e. before having found all other notes that annotate
the same object). As such, this patch may incur a small performance penalty.

Suggested-by: Sam Vilain <sam@vilain.net>
Re-suggested-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Johan Herland <johan@herland.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
This commit is contained in:
Johan Herland 2009-10-09 12:22:09 +02:00 committed by Junio C Hamano
parent 0057c0917d
commit ef8db638cc

241
notes.c
View File

@ -59,115 +59,196 @@ static void load_subtree(struct leaf_node *subtree, struct int_node *node,
unsigned int n);
/*
* To find a leaf_node:
* Search the tree until the appropriate location for the given key is found:
* 1. Start at the root node, with n = 0
* 2. Use the nth nibble of the key as an index into a:
* - If a[n] is an int_node, recurse into that node and increment n
* - If a leaf_node with matching key, return leaf_node (assert note entry)
* 2. If a[0] at the current level is a matching subtree entry, unpack that
* subtree entry and remove it; restart search at the current level.
* 3. Use the nth nibble of the key as an index into a:
* - If a[n] is an int_node, recurse from #2 into that node and increment n
* - If a matching subtree entry, unpack that subtree entry (and remove it);
* restart search at the current level.
* - Otherwise, we end up at a NULL pointer, or a non-matching leaf_node.
* Backtrack out of the recursion, one level at a time and check a[0]:
* - If a[0] at the current level is a matching subtree entry, unpack that
* subtree entry (and remove it); restart search at the current level.
* - Otherwise, we have found one of the following:
* - a subtree entry which does not match the key
* - a note entry which may or may not match the key
* - an unused leaf node (NULL)
* In any case, set *tree and *n, and return pointer to the tree location.
*/
static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
const unsigned char *key_sha1)
static void **note_tree_search(struct int_node **tree,
unsigned char *n, const unsigned char *key_sha1)
{
struct leaf_node *l;
unsigned char i = GET_NIBBLE(n, key_sha1);
void *p = tree->a[i];
unsigned char i;
void *p = (*tree)->a[0];
if (GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE) {
l = (struct leaf_node *) CLR_PTR_TYPE(p);
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
/* unpack tree and resume search */
(*tree)->a[0] = NULL;
load_subtree(l, *tree, *n);
free(l);
return note_tree_search(tree, n, key_sha1);
}
}
i = GET_NIBBLE(*n, key_sha1);
p = (*tree)->a[i];
switch(GET_PTR_TYPE(p)) {
case PTR_TYPE_INTERNAL:
l = note_tree_find(CLR_PTR_TYPE(p), n + 1, key_sha1);
if (l)
return l;
break;
case PTR_TYPE_NOTE:
l = (struct leaf_node *) CLR_PTR_TYPE(p);
if (!hashcmp(key_sha1, l->key_sha1))
return l; /* return note object matching given key */
break;
*tree = CLR_PTR_TYPE(p);
(*n)++;
return note_tree_search(tree, n, key_sha1);
case PTR_TYPE_SUBTREE:
l = (struct leaf_node *) CLR_PTR_TYPE(p);
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
/* unpack tree and resume search */
tree->a[i] = NULL;
load_subtree(l, tree, n);
(*tree)->a[i] = NULL;
load_subtree(l, *tree, *n);
free(l);
return note_tree_find(tree, n, key_sha1);
return note_tree_search(tree, n, key_sha1);
}
break;
case PTR_TYPE_NULL:
/* fall through */
default:
assert(!p);
break;
return &((*tree)->a[i]);
}
}
/*
* Did not find key at this (or any lower) level.
* Check if there's a matching subtree entry in tree->a[0].
* If so, unpack tree and resume search.
/*
* To find a leaf_node:
* Search to the tree location appropriate for the given key:
* If a note entry with matching key, return the note entry, else return NULL.
*/
p = tree->a[0];
if (GET_PTR_TYPE(p) != PTR_TYPE_SUBTREE)
return NULL;
l = (struct leaf_node *) CLR_PTR_TYPE(p);
if (!SUBTREE_SHA1_PREFIXCMP(key_sha1, l->key_sha1)) {
/* unpack tree and resume search */
tree->a[0] = NULL;
load_subtree(l, tree, n);
free(l);
return note_tree_find(tree, n, key_sha1);
static struct leaf_node *note_tree_find(struct int_node *tree, unsigned char n,
const unsigned char *key_sha1)
{
void **p = note_tree_search(&tree, &n, key_sha1);
if (GET_PTR_TYPE(*p) == PTR_TYPE_NOTE) {
struct leaf_node *l = (struct leaf_node *) CLR_PTR_TYPE(*p);
if (!hashcmp(key_sha1, l->key_sha1))
return l;
}
return NULL;
}
/* Create a new blob object by concatenating the two given blob objects */
static int concatenate_notes(unsigned char *cur_sha1,
const unsigned char *new_sha1)
{
char *cur_msg, *new_msg, *buf;
unsigned long cur_len, new_len, buf_len;
enum object_type cur_type, new_type;
int ret;
/* read in both note blob objects */
new_msg = read_sha1_file(new_sha1, &new_type, &new_len);
if (!new_msg || !new_len || new_type != OBJ_BLOB) {
free(new_msg);
return 0;
}
cur_msg = read_sha1_file(cur_sha1, &cur_type, &cur_len);
if (!cur_msg || !cur_len || cur_type != OBJ_BLOB) {
free(cur_msg);
free(new_msg);
hashcpy(cur_sha1, new_sha1);
return 0;
}
/* we will separate the notes by a newline anyway */
if (cur_msg[cur_len - 1] == '\n')
cur_len--;
/* concatenate cur_msg and new_msg into buf */
buf_len = cur_len + 1 + new_len;
buf = (char *) xmalloc(buf_len);
memcpy(buf, cur_msg, cur_len);
buf[cur_len] = '\n';
memcpy(buf + cur_len + 1, new_msg, new_len);
free(cur_msg);
free(new_msg);
/* create a new blob object from buf */
ret = write_sha1_file(buf, buf_len, "blob", cur_sha1);
free(buf);
return ret;
}
/*
* To insert a leaf_node:
* 1. Start at the root node, with n = 0
* 2. Use the nth nibble of the key as an index into a:
* - If a[n] is NULL, store the tweaked pointer directly into a[n]
* - If a[n] is an int_node, recurse into that node and increment n
* - If a[n] is a leaf_node:
* 1. Check if they're equal, and handle that (abort? overwrite?)
* 2. Create a new int_node, and store both leaf_nodes there
* 3. Store the new int_node into a[n].
* Search to the tree location appropriate for the given leaf_node's key:
* - If location is unused (NULL), store the tweaked pointer directly there
* - If location holds a note entry that matches the note-to-be-inserted, then
* concatenate the two notes.
* - If location holds a note entry that matches the subtree-to-be-inserted,
* then unpack the subtree-to-be-inserted into the location.
* - If location holds a matching subtree entry, unpack the subtree at that
* location, and restart the insert operation from that level.
* - Else, create a new int_node, holding both the node-at-location and the
* node-to-be-inserted, and store the new int_node into the location.
*/
static int note_tree_insert(struct int_node *tree, unsigned char n,
const struct leaf_node *entry, unsigned char type)
static void note_tree_insert(struct int_node *tree, unsigned char n,
struct leaf_node *entry, unsigned char type)
{
struct int_node *new_node;
const struct leaf_node *l;
int ret;
unsigned char i = GET_NIBBLE(n, entry->key_sha1);
void *p = tree->a[i];
assert(GET_PTR_TYPE(entry) == PTR_TYPE_NULL);
switch(GET_PTR_TYPE(p)) {
struct leaf_node *l;
void **p = note_tree_search(&tree, &n, entry->key_sha1);
assert(GET_PTR_TYPE(entry) == 0); /* no type bits set */
l = (struct leaf_node *) CLR_PTR_TYPE(*p);
switch(GET_PTR_TYPE(*p)) {
case PTR_TYPE_NULL:
assert(!p);
tree->a[i] = SET_PTR_TYPE(entry, type);
return 0;
case PTR_TYPE_INTERNAL:
return note_tree_insert(CLR_PTR_TYPE(p), n + 1, entry, type);
default:
assert(GET_PTR_TYPE(p) == PTR_TYPE_NOTE ||
GET_PTR_TYPE(p) == PTR_TYPE_SUBTREE);
l = (const struct leaf_node *) CLR_PTR_TYPE(p);
if (!hashcmp(entry->key_sha1, l->key_sha1))
return -1; /* abort insert on matching key */
new_node = (struct int_node *)
xcalloc(sizeof(struct int_node), 1);
ret = note_tree_insert(new_node, n + 1,
CLR_PTR_TYPE(p), GET_PTR_TYPE(p));
if (ret) {
free(new_node);
return -1;
assert(!*p);
*p = SET_PTR_TYPE(entry, type);
return;
case PTR_TYPE_NOTE:
switch (type) {
case PTR_TYPE_NOTE:
if (!hashcmp(l->key_sha1, entry->key_sha1)) {
/* skip concatenation if l == entry */
if (!hashcmp(l->val_sha1, entry->val_sha1))
return;
if (concatenate_notes(l->val_sha1,
entry->val_sha1))
die("failed to concatenate note %s "
"into note %s for commit %s",
sha1_to_hex(entry->val_sha1),
sha1_to_hex(l->val_sha1),
sha1_to_hex(l->key_sha1));
free(entry);
return;
}
tree->a[i] = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
return note_tree_insert(new_node, n + 1, entry, type);
break;
case PTR_TYPE_SUBTREE:
if (!SUBTREE_SHA1_PREFIXCMP(l->key_sha1,
entry->key_sha1)) {
/* unpack 'entry' */
load_subtree(entry, tree, n);
free(entry);
return;
}
break;
}
break;
case PTR_TYPE_SUBTREE:
if (!SUBTREE_SHA1_PREFIXCMP(entry->key_sha1, l->key_sha1)) {
/* unpack 'l' and restart insert */
*p = NULL;
load_subtree(l, tree, n);
free(l);
note_tree_insert(tree, n, entry, type);
return;
}
break;
}
/* non-matching leaf_node */
assert(GET_PTR_TYPE(*p) == PTR_TYPE_NOTE ||
GET_PTR_TYPE(*p) == PTR_TYPE_SUBTREE);
new_node = (struct int_node *) xcalloc(sizeof(struct int_node), 1);
note_tree_insert(new_node, n + 1, l, GET_PTR_TYPE(*p));
*p = SET_PTR_TYPE(new_node, PTR_TYPE_INTERNAL);
note_tree_insert(new_node, n + 1, entry, type);
}
/* Free the entire notes data contained in the given tree */
@ -220,7 +301,6 @@ static void load_subtree(struct leaf_node *subtree, struct int_node *node,
{
unsigned char commit_sha1[20];
unsigned int prefix_len;
int status;
void *buf;
struct tree_desc desc;
struct name_entry entry;
@ -254,8 +334,7 @@ static void load_subtree(struct leaf_node *subtree, struct int_node *node,
l->key_sha1[19] = (unsigned char) len;
type = PTR_TYPE_SUBTREE;
}
status = note_tree_insert(node, n, l, type);
assert(!status);
note_tree_insert(node, n, l, type);
}
}
free(buf);