Implement transactional update to the packed-ref representation of
references.
* mh/packed-ref-transactions:
files_transaction_finish(): delete reflogs before references
packed-backend: rip out some now-unused code
files_ref_store: use a transaction to update packed refs
t1404: demonstrate two problems with reference transactions
files_initial_transaction_commit(): use a transaction for packed refs
prune_refs(): also free the linked list
files_pack_refs(): use a reference transaction to write packed refs
packed_delete_refs(): implement method
packed_ref_store: implement reference transactions
struct ref_transaction: add a place for backends to store data
packed-backend: don't adjust the reference count on lock/unlock
Now the outside world interacts with the packed ref store only via the
generic refs API plus a few lock-related functions. This allows us to
delete some functions that are no longer used, thereby completing the
encapsulation of the packed ref store.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Implement `packed_delete_refs()` using a reference transaction. This
means that `files_delete_refs()` can use `refs_delete_refs()` instead
of `repack_without_refs()` to delete any packed references, decreasing
the coupling between the classes.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Implement the methods needed to support reference transactions for
the packed-refs backend. The new methods are not yet used.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The old code incremented the packed ref cache reference count when
acquiring the packed-refs lock, and decremented the count when
releasing the lock. This is unnecessary because:
* Another process cannot change the packed-refs file because it is
locked.
* When we ourselves change the packed-refs file, we do so by first
modifying the packed ref-cache, and then writing the data from the
ref-cache to disk. So the packed ref-cache remains fresh because any
changes that we plan to make to the file are made in the cache first
anyway.
So there is no reason for the cache to become stale.
Moreover, the extra reference count causes a problem if we
intentionally clear the packed refs cache, as we sometimes need to do
if we change the cache in anticipation of writing a change to disk,
but then the write to disk fails. In that case, `packed_refs_unlock()`
would have no easy way to find the cache whose reference count it
needs to decrement.
This whole issue will soon become moot due to upcoming changes that
avoid changing the in-memory cache as part of updating the packed-refs
on disk, but this change makes that transition easier.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The previous commit taught the tempfile code to give up
ownership over tempfiles that have been renamed or deleted.
That makes it possible to use a stack variable like this:
struct tempfile t;
create_tempfile(&t, ...);
...
if (!err)
rename_tempfile(&t, ...);
else
delete_tempfile(&t);
But doing it this way has a high potential for creating
memory errors. The tempfile we pass to create_tempfile()
ends up on a global linked list, and it's not safe for it to
go out of scope until we've called one of those two
deactivation functions.
Imagine that we add an early return from the function that
forgets to call delete_tempfile(). With a static or heap
tempfile variable, the worst case is that the tempfile hangs
around until the program exits (and some functions like
setup_shallow_temporary rely on this intentionally, creating
a tempfile and then leaving it for later cleanup).
But with a stack variable as above, this is a serious memory
error: the variable goes out of scope and may be filled with
garbage by the time the tempfile code looks at it. Let's
see if we can make it harder to get this wrong.
Since many callers need to allocate arbitrary numbers of
tempfiles, we can't rely on static storage as a general
solution. So we need to turn to the heap. We could just ask
all callers to pass us a heap variable, but that puts the
burden on them to call free() at the right time.
Instead, let's have the tempfile code handle the heap
allocation _and_ the deallocation (when the tempfile is
deactivated and removed from the list).
This changes the return value of all of the creation
functions. For the cleanup functions (delete and rename),
we'll add one extra bit of safety: instead of taking a
tempfile pointer, we'll take a pointer-to-pointer and set it
to NULL after freeing the object. This makes it safe to
double-call functions like delete_tempfile(), as the second
call treats the NULL input as a noop. Several callsites
follow this pattern.
The resulting patch does have a fair bit of noise, as each
caller needs to be converted to handle:
1. Storing a pointer instead of the struct itself.
2. Passing the pointer instead of taking the struct
address.
3. Handling a "struct tempfile *" return instead of a file
descriptor.
We could play games to make this less noisy. For example, by
defining the tempfile like this:
struct tempfile {
struct heap_allocated_part_of_tempfile {
int fd;
...etc
} *actual_data;
}
Callers would continue to have a "struct tempfile", and it
would be "active" only when the inner pointer was non-NULL.
But that just makes things more awkward in the long run.
There aren't that many callers, so we can simply bite
the bullet and adjust all of them. And the compiler makes it
easy for us to find them all.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Since the lockfile code is based on the tempfile code, it
has some of the same problems, including that close_lock_file()
erases the tempfile's filename buf, making it hard for the
caller to write a good error message.
In practice this comes up less for lockfiles than for
straight tempfiles, since we usually just report the
refname. But there is at least one buggy case in
write_ref_to_lockfile(). Besides, given the coupling between
the lockfile and tempfile modules, it's less confusing if
their close() functions have the same semantics.
Just as the previous commit did for close_tempfile(), let's
teach close_lock_file() and its wrapper close_ref() not to
rollback on error. And just as before, we'll give them new
"gently" names to catch any new callers that are added.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The "ref-store" code reorganization continues.
* mh/packed-ref-store: (32 commits)
files-backend: cheapen refname_available check when locking refs
packed_ref_store: handle a packed-refs file that is a symlink
read_packed_refs(): die if `packed-refs` contains bogus data
t3210: add some tests of bogus packed-refs file contents
repack_without_refs(): don't lock or unlock the packed refs
commit_packed_refs(): remove call to `packed_refs_unlock()`
clear_packed_ref_cache(): don't protest if the lock is held
packed_refs_unlock(), packed_refs_is_locked(): new functions
packed_refs_lock(): report errors via a `struct strbuf *err`
packed_refs_lock(): function renamed from lock_packed_refs()
commit_packed_refs(): use a staging file separate from the lockfile
commit_packed_refs(): report errors rather than dying
packed_ref_store: make class into a subclass of `ref_store`
packed-backend: new module for handling packed references
packed_read_raw_ref(): new function, replacing `resolve_packed_ref()`
packed_ref_store: support iteration
packed_peel_ref(): new function, extracted from `files_peel_ref()`
repack_without_refs(): take a `packed_ref_store *` parameter
get_packed_ref(): take a `packed_ref_store *` parameter
rollback_packed_refs(): take a `packed_ref_store *` parameter
...
One of the tricks that `contrib/workdir/git-new-workdir` plays is to
making `packed-refs` in the new workdir a symlink to the `packed-refs`
file in the original repository. Before
42dfa7ecef ("commit_packed_refs(): use a staging file separate from
the lockfile", 2017-06-23), a lockfile was used as the staging file,
and because the `LOCK_NO_DEREF` was not used, the pointed-to file was
locked and modified.
But after that commit, the staging file was created using a tempfile,
with the end result that rewriting the `packed-refs` file in the
workdir overwrote the symlink rather than the original `packed-refs`
file.
Change `commit_packed_refs()` to use `get_locked_file_path()` to find
the path of the file that it should overwrite. Since that path was
properly resolved when the lockfile was created, this restores the
pre-42dfa7ecef behavior.
Also add a test case to document this use case and prevent a
regression like this from recurring.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Reviewed-by: Jonathan Nieder <jrnieder@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The old code ignored any lines that it didn't understand, including
unterminated lines. This is dangerous. Instead, `die()` if the
`packed-refs` file contains any unterminated lines or lines that we
don't know how to handle.
This fixes the tests added in the last commit.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Change `repack_without_refs()` to expect the packed-refs lock to be
held already, and not to release the lock before returning. Change the
callers to deal with lock management.
This change makes it possible for callers to hold the packed-refs lock
for a longer span of time, a possibility that will eventually make it
possible to fix some longstanding races.
The only semantic change here is that `repack_without_refs()` used to
forget to release the lock in the `if (!removed)` exit path. That
omission is now fixed.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Instead, change the callers of `commit_packed_refs()` to call
`packed_refs_unlock()`.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The existing callers already check that the lock isn't held just
before calling `clear_packed_ref_cache()`, and in the near future we
want to be able to call this function when the lock is held.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Add two new public functions, `packed_refs_unlock()` and
`packed_refs_is_locked()`, with which callers can manage and query the
`packed-refs` lock externally.
Call `packed_refs_unlock()` from `commit_packed_refs()` and
`rollback_packed_refs()`.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
That way the callers don't have to come up with error messages
themselves.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Rename `lock_packed_refs()` to `packed_refs_lock()` for consistency
with how other methods are named. Also, it's about to get some
companions.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We will want to be able to hold the lockfile for `packed-refs` even
after we have activated the new values. So use a separate tempfile,
`packed-refs.new`, as a place to stage the new contents of the
`packed-refs` file. For now this is all done within
`commit_packed_refs()`, but that will change shortly.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Report errors via a `struct strbuf *err` rather than by calling
`die()`. To enable this goal, change `write_packed_entry()` to report
errors via a return value and `errno` rather than dying.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Add the infrastructure to make `packed_ref_store` implement
`ref_store`, at least formally (few of the methods are actually
implemented yet). Change the functions in its interface to take
`ref_store *` arguments. Change `files_ref_store` to store a pointer
to `ref_store *` and to call functions via the virtual `ref_store`
interface where possible. This also means that a few
`packed_ref_store` functions can become static.
This is a work in progress. Some more `ref_store` methods will soon be
implemented (e.g., those having to do with reference transactions).
But some of them will never be implemented (e.g., those having to do
with symrefs or reflogs).
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Now that the interface between `files_ref_store` and
`packed_ref_store` is relatively narrow, move the latter into a new
module, "refs/packed-backend.h" and "refs/packed-backend.c". It still
doesn't quite implement the `ref_store` interface, but it will soon.
This commit moves code around and adjusts its visibility, but doesn't
change anything.
Signed-off-by: Michael Haggerty <mhagger@alum.mit.edu>
Signed-off-by: Junio C Hamano <gitster@pobox.com>