It can sometimes be useful to see which refs are contributing to the
overall repository size (e.g., does some branch have a bunch of objects
not found elsewhere in history, which indicates that deleting it would
shrink the size of a clone).
You can find that out by generating a list of objects, getting their
sizes from cat-file, and then summing them, like:
git rev-list --objects --no-object-names main..branch
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
Though note that the caveats from git-cat-file(1) apply here. We "blame"
base objects more than their deltas, even though the relationship could
easily be flipped. Still, it can be a useful rough measure.
But one problem is that it's slow to run. Teaching rev-list to sum up
the sizes can be much faster for two reasons:
1. It skips all of the piping of object names and sizes.
2. If bitmaps are in use, for objects that are in the
bitmapped packfile we can skip the oid_object_info()
lookup entirely, and just ask the revindex for the
on-disk size.
This patch implements a --disk-usage option which produces the same
answer in a fraction of the time. Here are some timings using a clone of
torvalds/linux:
[rev-list piped to cat-file, no bitmaps]
$ time git rev-list --objects --no-object-names --all |
git cat-file --buffer --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m29.635s
user 0m38.003s
sys 0m1.093s
[internal, no bitmaps]
$ time git rev-list --disk-usage --objects --all
1459938510
real 0m31.262s
user 0m30.885s
sys 0m0.376s
Even though the wall-clock time is slightly worse due to parallelism,
notice the CPU savings between the two. We saved 21% of the CPU just by
avoiding the pipes.
But the real win is with bitmaps. If we use them without the new option:
[rev-list piped to cat-file, bitmaps]
$ time git rev-list --objects --no-object-names --all --use-bitmap-index |
git cat-file --batch-check='%(objectsize:disk)' |
perl -lne '$total += $_; END { print $total }'
1459938510
real 0m6.244s
user 0m8.452s
sys 0m0.311s
then we're faster to generate the list of objects, but we still spend a
lot of time piping and looking things up. But if we do both together:
[internal, bitmaps]
$ time git rev-list --disk-usage --objects --all --use-bitmap-index
1459938510
real 0m0.219s
user 0m0.169s
sys 0m0.049s
then we get the same answer much faster.
For "--all", that answer will correspond closely to "du objects/pack",
of course. But we're actually checking reachability here, so we're still
fast when we ask for more interesting things:
$ time git rev-list --disk-usage --use-bitmap-index v5.0..v5.10
374798628
real 0m0.429s
user 0m0.356s
sys 0m0.072s
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove another instance of looking at the revindex directly by instead
calling 'pack_pos_to_index()'. Unlike other patches, this caller only
cares about the index position of each object in the loop.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove another instance of direct revindex manipulation by calling
'pack_pos_to_offset()' instead (the caller here does not care about the
index position of the object at position 'pos').
Note that we cannot just use the existing "offset" variable to store the
value we get from pack_pos_to_offset(). It is incremented by
unpack_object_header(), but we later need the original value. Since
we'll no longer have revindex->offset to read it from, we'll store that
in a separate variable ("header" since it points to the entry's header
bytes).
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Remove another caller that holds onto a 'struct revindex_entry' by
replacing the direct indexing with calls to 'pack_pos_to_offset()' and
'pack_pos_to_index()'.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Avoid storing the revindex entry directly, since this structure will
soon be removed from the public interface. Instead, store the offset and
index position by calling 'pack_pos_to_offset()' and
'pack_pos_to_index()', respectively.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Replace find_revindex_position() with its counterpart in the new API,
offset_to_pack_pos().
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
'find_objects()' currently needs to interact with the bitmaps khash
pretty closely. To make 'find_objects()' read a little more
straightforwardly, remove some of the khash-level details into a new
function that describes what it does: 'add_commit_to_bitmap()'.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A couple of callers within pack-bitmap.c duplicate logic to lookup a
given object id in the bitamps khash. Factor this out into a new
function, 'bitmap_for_commit()' to reduce some code duplication.
Make this new function non-static, since it will be used in later
commits from outside of pack-bitmap.c.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The on-disk bitmap format has a flag to mark a bitmap to be "reused".
This is a rather curious feature, and works like this:
- a run of pack-objects would decide to mark the last 80% of the
bitmaps it generates with the reuse flag
- the next time we generate bitmaps, we'd see those reuse flags from
the last run, and mark those commits as special:
- we'd be more likely to select those commits to get bitmaps in
the new output
- when generating the bitmap for a selected commit, we'd reuse the
old bitmap as-is (rearranging the bits to match the new pack, of
course)
However, neither of these behaviors particularly makes sense.
Just because a commit happened to be bitmapped last time does not make
it a good candidate for having a bitmap this time. In particular, we may
choose bitmaps based on how recent they are in history, or whether a ref
tip points to them, and those things will change. We're better off
re-considering fresh which commits are good candidates.
Reusing the existing bitmap _is_ a reasonable thing to do to save
computation. But only reusing exact bitmaps is a weak form of this. If
we have an old bitmap for A and now want a new bitmap for its child, we
should be able to compute that only by looking at trees and that are new
to the child. But this code would consider only exact reuse (which is
perhaps why it was eager to select those commits in the first place).
Furthermore, the recent switch to the reverse-edge algorithm for
generating bitmaps dropped this optimization entirely (and yet still
performs better).
So let's do a few cleanups:
- drop the whole "reusing bitmaps" phase of generating bitmaps. It's
not helping anything, and is mostly unused code (or worse, code that
is using CPU but not doing anything useful)
- drop the use of the on-disk reuse flag to select commits to bitmap
- stop setting the on-disk reuse flag in bitmaps we generate (since
nothing respects it anymore)
We will keep a few innards of the reuse code, which will help us
implement a more capable version of the "reuse" optimization:
- simplify rebuild_existing_bitmaps() into a function that only builds
the mapping of bits between the old and new orders, but doesn't
actually convert any bitmaps
- make rebuild_bitmap() public; we'll call it lazily to convert bitmaps
as we traverse (using the mapping created above)
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Before 'load_bitmap_entries_v1()' reads an actual EWAH bitmap, it should
check that it can safely do so by ensuring that there are at least 6
bytes available to be read (four for the commit's index position, and
then two more for the xor offset and flags, respectively).
Likewise, it should check that the commit index it read refers to a
legitimate object in the pack.
The first fix catches a truncation bug that was exposed when testing,
and the second is purely precautionary.
There are some possible future improvements, not pursued here. They are:
- Computing the correct boundary of the bitmap itself in the caller
and ensuring that we don't read past it. This may or may not be
worth it, since in a truncation situation, all bets are off: (is the
trailer still there and the bitmap entries malformed, or is the
trailer truncated?). The best we can do is try to read what's there
as if it's correct data (and protect ourselves when it's obviously
bogus).
- Avoid the magic "6" by teaching read_be32() and read_u8() (both of
which are custom helpers for this function) to check sizes before
advancing the pointers.
- Adding more tests in this area. Testing these truncation situations
are remarkably fragile to even subtle changes in the bitmap
generation. So, the resulting tests are likely to be quite brittle.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
You can use "git rev-list --test-bitmap HEAD" to check that bitmaps
produce the same answer we'd get from a regular traversal. But if we
detect an error, we only print "mismatch", and still exit with a
successful error code.
That makes the uses of --test-bitmap in the test suite (e.g., in t5310)
mostly pointless: even if we saw an error, the tests wouldn't notice.
Let's instead call die(), which will let these tests work as designed,
and alert us if the bitmaps are bogus.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A .bitmap file may have a "name hash cache" extension, which puts a
sequence of uint32_t values (one per object) at the end of the file.
When we see a flag indicating this extension, we blindly subtract the
appropriate number of bytes from our available length. However, if the
.bitmap file is too short, we'll underflow our length variable and wrap
around, thinking we have a very large length. This can lead to reading
out-of-bounds bytes while loading individual ewah bitmaps.
We can fix this by checking the number of available bytes when we parse
the header. The existing "truncated bitmap" test is now split into two
tests: one where we don't have this extension at all (and hence actually
do try to read a truncated ewah bitmap) and one where we realize
up-front that we can't even fit in the cache structure. We'll check
stderr in each case to make sure we hit the error we're expecting.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When we parse a .bitmap header, we first check that we have enough bytes
to make a valid header. We do that based on sizeof(struct
bitmap_disk_header). However, as of 0f4d6cada8 (pack-bitmap: make bitmap
header handling hash agnostic, 2019-02-19), that struct oversizes its
checksum member to GIT_MAX_RAWSZ. That means we need to adjust for the
difference between that constant and the size of the actual hash we're
using. That commit adjusted the code which moves our pointer forward,
but forgot to update the size check.
This meant we were overly strict about the header size (requiring room
for a 32-byte worst-case hash, when sha1 is only 20 bytes). But in
practice it didn't matter because bitmap files tend to have at least 12
bytes of actual data anyway, so it was unlikely for a valid file to be
caught by this.
Let's fix it by pulling the header size into a separate variable and
using it in both spots. That fixes the bug and simplifies the code to make
it harder to have a mismatch like this in the future. It will also come
in handy in the next patch for more bounds checking.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Sometimes a bitmap traversal still has to walk some commits manually,
because those commits aren't included in the bitmap packfile (e.g., due
to a push or commit since the last full repack). If we're given an
object filter, we don't pass it down to this traversal. It's not
necessary for correctness because the bitmap code has its own filters to
post-process the bitmap result (which it must, to filter out the objects
that _are_ mentioned in the bitmapped packfile).
And with blob filters, there was no performance reason to pass along
those filters, either. The fill-in traversal could omit them from the
result, but it wouldn't save us any time to do so, since we'd still have
to walk each tree entry to see if it's a blob or not.
But now that we support tree filters, there's opportunity for savings. A
tree:depth=0 filter means we can avoid accessing trees entirely, since
we know we won't them (or any of the subtrees or blobs they point to).
The new test in p5310 shows this off (the "partial bitmap" state is one
where HEAD~100 and its ancestors are all in a bitmapped pack, but
HEAD~100..HEAD are not). Here are the results (run against linux.git):
Test HEAD^ HEAD
-------------------------------------------------------------------------------------------------
[...]
5310.16: rev-list with tree filter (partial bitmap) 0.19(0.17+0.02) 0.03(0.02+0.01) -84.2%
The absolute number of savings isn't _huge_, but keep in mind that we
only omitted 100 first-parent links (in the version of linux.git here,
that's 894 actual commits). In a more pathological case, we might have a
much larger proportion of non-bitmapped commits. I didn't bother
creating such a case in the perf script because the setup is expensive,
and this is plenty to show the savings as a percentage.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In the previous patch, we made it easy to define other filters that
exclude all objects of a certain type. Use that in order to implement
bitmap-level filtering for the '--filter=tree:<n>' filter when 'n' is
equal to 0.
The general case is not helped by bitmaps, since for values of 'n > 0',
the object filtering machinery requires a full-blown tree traversal in
order to determine the depth of a given tree. Caching this is
non-obvious, too, since the same tree object can have a different depth
depending on the context (e.g., a tree was moved up in the directory
hierarchy between two commits).
But, the 'n = 0' case can be helped, and this patch does so. Running
p5310.11 in this tree and on master with the kernel, we can see that
this case is helped substantially:
Test master this tree
--------------------------------------------------------------------------------
5310.11: rev-list count with tree:0 10.68(10.39+0.27) 0.06(0.04+0.01) -99.4%
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In 4f3bd5606a (pack-bitmap: implement BLOB_NONE filtering, 2020-02-14),
filtering support for bitmaps was added for the 'LOFC_BLOB_NONE' filter.
In the future, we would like to add support for filters that behave as
if they exclude a certain type of object, for e.g., the tree depth
filter with depth 0.
To prepare for this, make some of the functions used for filtering more
generic, such as 'find_tip_blobs' and 'filter_bitmap_blob_none' so that
they can work over arbitrary object types.
To that end, create 'find_tip_objects' and
'filter_bitmap_exclude_type', and redefine the aforementioned functions
in terms of those.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Code cleanup to use "struct object_id" more by replacing use of
"char *sha1"
* jk/nth-packed-object-id:
packfile: drop nth_packed_object_sha1()
packed_object_info(): use object_id internally for delta base
packed_object_info(): use object_id for returning delta base
pack-check: push oid lookup into loop
pack-check: convert "internal error" die to a BUG()
pack-bitmap: use object_id when loading on-disk bitmaps
pack-objects: use object_id struct in pack-reuse code
pack-objects: convert oe_set_delta_ext() to use object_id
pack-objects: read delta base oid into object_id struct
nth_packed_object_oid(): use customary integer return
The object reachability bitmap machinery and the partial cloning
machinery were not prepared to work well together, because some
object-filtering criteria that partial clones use inherently rely
on object traversal, but the bitmap machinery is an optimization
to bypass that object traversal. There however are some cases
where they can work together, and they were taught about them.
* jk/object-filter-with-bitmap:
rev-list --count: comment on the use of count_right++
pack-objects: support filters with bitmaps
pack-bitmap: implement BLOB_LIMIT filtering
pack-bitmap: implement BLOB_NONE filtering
bitmap: add bitmap_unset() function
rev-list: use bitmap filters for traversal
pack-bitmap: basic noop bitmap filter infrastructure
rev-list: allow commit-only bitmap traversals
t5310: factor out bitmap traversal comparison
rev-list: allow bitmaps when counting objects
rev-list: make --count work with --objects
rev-list: factor out bitmap-optimized routines
pack-bitmap: refuse to do a bitmap traversal with pathspecs
rev-list: fallback to non-bitmap traversal when filtering
pack-bitmap: fix leak of haves/wants object lists
pack-bitmap: factor out type iterator initialization
A pack bitmap file contains the index position of the commit for each
bitmap, which we then translate into an object id via
nth_packed_object_sha1(). In preparation for that function going away,
we can switch to the more type-safe nth_packed_object_id().
Note that even though the result ends up in an object_id this does incur
an extra copy of the hash (into our temporary object_id, and then into
the final malloc'd stored_bitmap struct). This shouldn't make any
measurable difference. If it did, we could avoid this copy _and_ the
copy of the rest of the items by allocating the stored_bitmap struct
beforehand and reading directly into it from the bitmap file. Or better
still, if this is a bottleneck, we could introduce an on-disk index to
the bitmap file so we don't have to read every single entry to use just
one of them. So it's not worth worrying about micro-optimizing out this
one hash copy.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Our nth_packed_object_sha1() function returns NULL for error. So when we
wrapped it with nth_packed_object_oid(), we kept the same semantics. But
it's a bit funny, because the caller actually passes in an out
parameter, and the pointer we return is just that same struct they
passed to us (or NULL).
It's not too terrible, but it does make the interface a little
non-idiomatic. Let's switch to our usual "0 for success, negative for
error" return value. Most callers either don't check it, or are
trivially converted. The one that requires the biggest change is
actually improved, as we can ditch an extra aliased pointer variable.
Since we are changing the interface in a subtle way that the compiler
wouldn't catch, let's also change the name to catch any topics in
flight. We can drop the 'o' and make it nth_packed_object_id(). That's
slightly shorter, but also less redundant since the 'o' stands for
"object" already.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Just as the previous commit implemented BLOB_NONE, we can support
BLOB_LIMIT filters by looking at the sizes of any blobs in the result
and unsetting their bits as appropriate. This is slightly more expensive
than BLOB_NONE, but still produces a noticeable speedup (these results
are on git.git):
Test HEAD~2 HEAD
------------------------------------------------------------------------------------
5310.9: rev-list count with blob:none 1.80(1.77+0.02) 0.22(0.20+0.02) -87.8%
5310.10: rev-list count with blob:limit=1k 1.99(1.96+0.03) 0.29(0.25+0.03) -85.4%
The implementation is similar to the BLOB_NONE one, with the exception
that we have to go object-by-object while walking the blob-type bitmap
(since we can't mask out the matches, but must look up the size
individually for each blob). The trick with using ctz64() is taken from
show_objects_for_type(), which likewise needs to find individual bits
(but wants to quickly skip over big chunks without blobs).
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We can easily support BLOB_NONE filters with bitmaps. Since we know the
types of all of the objects, we just need to clear the result bits of
any blobs.
Note two subtleties in the implementation (which I also called out in
comments):
- we have to include any blobs that were specifically asked for (and
not reached through graph traversal) to match the non-bitmap version
- we have to handle in-pack and "ext_index" objects separately.
Arguably prepare_bitmap_walk() could be adding these ext_index
objects to the type bitmaps. But it doesn't for now, so let's match
the rest of the bitmap code here (it probably wouldn't be an
efficiency improvement to do so since the cost of extending those
bitmaps is about the same as our loop here, but it might make the
code a bit simpler).
Here are perf results for the new test on git.git:
Test HEAD^ HEAD
--------------------------------------------------------------------------------
5310.9: rev-list count with blob:none 1.67(1.62+0.05) 0.22(0.21+0.02) -86.8%
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Currently you can't use object filters with bitmaps, but we plan to
support at least some filters with bitmaps. Let's introduce some
infrastructure that will help us do that:
- prepare_bitmap_walk() now accepts a list_objects_filter_options
parameter (which can be NULL for no filtering; all the current
callers pass this)
- we'll bail early if the filter is incompatible with bitmaps (just as
we would if there were no bitmaps at all). Currently all filters are
incompatible.
- we'll filter the resulting bitmap; since there are no supported
filters yet, this is always a noop.
There should be no behavior change yet, but we'll support some actual
filters in a future patch.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Ever since we added reachability bitmap support, we've been able to use
it with rev-list to get the full list of objects, like:
git rev-list --objects --use-bitmap-index --all
But you can't do so without --objects, since we weren't ready to just
show the commits. However, the internals of the bitmap code are mostly
ready for this: they avoid opening up trees when walking to fill in the
bitmaps. We just need to actually pass in the rev_info to
traverse_bitmap_commit_list() so it knows which types to bother
triggering our callback for.
For completeness, the perf test now covers both the existing --objects
case, as well as the new commits-only behavior (the objects one got way
faster when we introduced bitmaps, but obviously isn't improved now).
Here are numbers for linux.git:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 8.29(8.10+0.19) 1.76(1.72+0.04) -78.8%
5310.8: rev-list (objects) 8.06(7.94+0.12) 8.14(7.94+0.13) +1.0%
That run was cheating a little, as I didn't have any commit-graph in the
repository, and we'd built it by default these days when running git-gc.
Here are numbers with a commit-graph:
Test HEAD^ HEAD
------------------------------------------------------------------------
5310.7: rev-list (commits) 0.70(0.58+0.12) 0.51(0.46+0.04) -27.1%
5310.8: rev-list (objects) 6.20(6.09+0.10) 6.27(6.16+0.11) +1.1%
Still an improvement, but a lot less impressive.
We could have the perf script remove any commit-graph to show the
out-sized effect, but it probably makes sense to leave it in what would
be a more typical setup.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
rev-list has refused to use bitmaps with pathspec limiting since
c8a70d3509 (rev-list: disable --use-bitmap-index when pruning commits,
2015-07-01). But this is true not just for rev-list, but for anyone who
calls prepare_bitmap_walk(); the code isn't equipped to handle this
case. We never noticed because the only other callers would never pass
a pathspec limiter.
But let's push the check down into prepare_bitmap_walk() anyway. That's
a more logical place for it to live, as callers shouldn't need to know
the details (and must be prepared to fall back to a regular traversal
anyway, since there might not be bitmaps in the repository).
It would also prepare us for a day where this case _is_ handled, but
that's pretty unlikely. E.g., we could use bitmaps to generate the set
of commits, and then diff each commit to see if it matches the pathspec.
That would be slightly faster than a naive traversal that actually walks
the commits. But you'd probably do better still to make use of the newer
commit-graph feature to make walking the commits very cheap.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When we do a bitmap-aware revision traversal, we create an object_list
for each of the "haves" and "wants" tips. After creating the result
bitmaps these are no longer needed or used, but we never free the list
memory.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When count_object_type() wants to iterate over the bitmap of all objects
of a certain type, we have to pair up OBJ_COMMIT with bitmap->commits,
and so forth. Since we're about to add more code to iterate over these
bitmaps, let's pull the initialization into its own function.
We can also use this to simplify traverse_bitmap_commit_list(). It
accomplishes the same thing by manually passing the object type and the
bitmap to show_objects_for_type(), but using our helper we just need the
object type.
Note there's one small code change here: previously we'd simply return
zero when counting an unknown object type, and now we'll BUG(). This
shouldn't matter in practice, as all of the callers pass in only usual
commit/tree/blob/tag types.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We no longer compute bitmap_git->reuse_objects, so we
cannot rely on it anymore to terminate the loop early;
we have to iterate to the end.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The old code to reuse deltas from an existing packfile
just tried to dump a whole segment of the pack verbatim.
That's faster than the traditional way of actually adding
objects to the packing list, but it didn't kick in very
often. This new code is really going for a middle ground:
do _some_ per-object work, but way less than we'd
traditionally do.
The general strategy of the new code is to make a bitmap
of objects from the packfile we'll include, and then
iterate over it, writing out each object exactly as it is
in our on-disk pack, but _not_ adding it to our packlist
(which costs memory, and increases the search space for
deltas).
One complication is that if we're omitting some objects,
we can't set a delta against a base that we're not
sending. So we have to check each object in
try_partial_reuse() to make sure we have its delta.
About performance, in the worst case we might have
interleaved objects that we are sending or not sending,
and we'd have as many chunks as objects. But in practice
we send big chunks.
For instance, packing torvalds/linux on GitHub servers
now reused 6.5M objects, but only needed ~50k chunks.
Helped-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Let's refactor bitmap_has_oid_in_uninteresting() using
bitmap_walk_contains().
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
bitmap_has_oid_in_uninteresting() only used bitmap_position_packfile(),
not bitmap_position(). So it wouldn't find objects which weren't in the
bitmapped packfile (i.e., ones where we extended the bitmap to handle
loose objects, or objects in other packs).
As we could reuse a delta against such an object it is suboptimal not
to use bitmap_position(), so let's use it instead of
bitmap_position_packfile().
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We will use this helper function in a following commit to
tell us if an object is packed.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Christian Couder <chriscool@tuxfamily.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Various fixes to codepaths gcc 9 had trouble following dataflow.
* jk/misc-uninitialized-fixes:
pack-objects: drop packlist index_pos optimization
test-read-cache: drop namelen variable
diff-delta: set size out-parameter to 0 for NULL delta
bulk-checkin: zero-initialize hashfile_checkpoint
pack-objects: use object_id in packlist_alloc()
git-am: handle missing "author" when parsing commit
Once upon a time, the code to add an object to our packing list in
pack-objects all lived in a single function. It computed the position
within the hash table once, then used it to check if the object was
already present, and if not, to add it.
Later, in 2834bc27c1 (pack-objects: refactor the packing list,
2013-10-24), this was split into two functions: packlist_find() and
packlist_alloc(). We ended up with an "index_pos" variable that gets
passed through several functions to make it from one to the other.
The resulting code is rather confusing to follow. The "index_pos"
variable is sometimes undefined, if we don't yet have a hash table. This
works out in practice because in that case packlist_alloc() won't use it
at all, since it will have to create/grow the hash table. But it's hard
to verify that, and it does cause gcc 9.2.1's -Wmaybe-uninitialized to
complain when compiled with "-flto -O3" (rightfully, since we do pass
the uninitialized value as a function parameter, even if nobody ends up
using it).
All of this is to save computing the hash index again when we're
inserting into the hash table, which I found doesn't make a measurable
difference in the program runtime (which is not surprising, since we're
doing all kinds of other heavyweight things for each object).
Let's just drop this index_pos variable entirely, simplifying the code
(and pleasing the compiler).
We might be better still refactoring this custom hash table to use one
of our existing implementations (an oidmap, or a kh_oid_map). I stopped
short of that here, but this would be the likely first step towards that
anyway.
Reported-by: Stephan Beyer <s-beyer@gmx.net>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Add a function for accessing the ID of the object referenced by a tag
safely, i.e. without causing a segfault when encountering a broken tag
where ->tagged is NULL.
Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
All of the users of our khash_sha1 maps actually have a "struct
object_id". Let's use the more descriptive type.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Commit 5a8643eff1 (khash: move oid hash table definition, 2019-02-19)
added a khash "oid_map" type to match the existing "oid" type, which is
a simple set (i.e., just keys, no values). But in setting up the
khash_oid_map typedef, it accidentally referred to "kh_oid_t", which is
the set type.
Nobody noticed the breakage because there are not yet any callers; the
type was added just as a match to the existing sha1 types (whose map
type confusingly _is_ called khash_sha1, and it has no matching set
type).
We could easily fix this with s/oid/oid_map/ in the typedef. But let's
take this a step further, and just drop the typedef entirely. These
typedefs were added by 5a8643eff1 to match the khash_sha1 typedefs. But
the actual khash-derived type names are descriptive enough; this is just
adding an extra layer of indirection. The khash names do not quite
follow our usual style (e.g., they end in "_t"), but since we end up
using other khash names (e.g., khiter_t, kh_get_oid()) anyway, just
typedef-ing the struct name is not really helping much.
And there are already many cases where we use the raw khash type names
anyway (e.g., the "set" variant defined just above us does not have such
a typedef!).
So let's drop this typedef, and the matching oid_pos one (which actually
_does_ have a user, but we can easily convert it).
We'll leave the khash_sha1 typedef around. The ultimate fate of its
callers should be conversion to kh_oid_map_t, so there's no point in
going through the noise of changing the names now.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
We take a raw hash pointer, but most of our callers have a "struct
object_id" already. Let's switch to taking the full struct, which will
let us continue removing uses of raw sha1 buffers.
There are two callers that do need special attention:
- in rebuild_existing_bitmaps(), we need to switch to
nth_packed_object_oid(). This incurs an extra hash copy over
pointing straight to the mmap'd sha1, but it shouldn't be measurable
compared to the rest of the operation.
- in can_reuse_delta() we already spent the effort to copy the sha1
into a "struct object_id", but now we just have to do so a little
earlier in the function (we can't easily convert that function's
callers because they may be pointing at mmap'd REF_DELTA blocks).
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Conversion from unsigned char[20] to struct object_id continues.
* bc/hash-transition-16: (35 commits)
gitweb: make hash size independent
Git.pm: make hash size independent
read-cache: read data in a hash-independent way
dir: make untracked cache extension hash size independent
builtin/difftool: use parse_oid_hex
refspec: make hash size independent
archive: convert struct archiver_args to object_id
builtin/get-tar-commit-id: make hash size independent
get-tar-commit-id: parse comment record
hash: add a function to lookup hash algorithm by length
remote-curl: make hash size independent
http: replace sha1_to_hex
http: compute hash of downloaded objects using the_hash_algo
http: replace hard-coded constant with the_hash_algo
http-walker: replace sha1_to_hex
http-push: remove remaining uses of sha1_to_hex
http-backend: allow 64-character hex names
http-push: convert to use the_hash_algo
builtin/pull: make hash-size independent
builtin/am: make hash size independent
...
We can't create a pack revindex if we haven't actually looked at the
index. Normally we would never get as far as creating a revindex without
having already been looking in the pack, so this code never bothered to
double-check that pack->index_data had been loaded.
But with the new multi-pack-index feature, many code paths might not
load the individual pack .idx at all (they'd find objects via the midx
and then open the .pack, but not its index).
This can't yet be triggered in practice, because a bug in the midx code
means we accidentally open up the individual .idx files anyway. But in
preparation for fixing that, let's have the revindex code check that
everything it needs has been loaded.
In most cases this will just be a quick noop. But note that this does
introduce a possibility of error (if we have to open the index and it's
corrupt), so load_pack_revindex() now returns a result code, and callers
need to handle the error.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Instead of storing unsigned char pointers in the hash tables, switch to
storing instances of struct object_id. Update several internal functions
and one external function to take pointers to struct object_id.
Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Switch two hard-coded uses of 20 to references to the_hash_algo.
Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Replace the uses of sha1_to_hex in the pack bitmap code with hash_to_hex
to allow the use of SHA-256 as well. Rename a few variables since they
are no longer limited to SHA-1.
Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Convert struct stored_bitmap to use struct object_id.
Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Increase the checksum field in struct bitmap_disk_header to be
GIT_MAX_RAWSZ bytes in length and ensure that we hash the proper number
of bytes out when computing the bitmap checksum.
Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Hotfix of the base topic.
* jk/pack-objects-with-bitmap-fix:
pack-bitmap: drop "loaded" flag
traverse_bitmap_commit_list(): don't free result
t5310: test delta reuse with bitmaps
bitmap_has_sha1_in_uninteresting(): drop BUG check
When creating a thin pack, which allows objects to be made into a
delta against another object that is not in the resulting pack but
is known to be present on the receiving end, the code learned to
take advantage of the reachability bitmap; this allows the server
to send a delta against a base beyond the "boundary" commit.
* jk/pack-delta-reuse-with-bitmap:
pack-objects: reuse on-disk deltas for thin "have" objects
pack-bitmap: save "have" bitmap from walk
t/perf: add perf tests for fetches from a bitmapped server
t/perf: add infrastructure for measuring sizes
t/perf: factor out percent calculations
t/perf: factor boilerplate out of test_perf
In the early days of the bitmap code, there was a single
static bitmap_index struct that was used behind the scenes,
and any bitmap-related functions could lazily check
bitmap_git.loaded to see if they needed to read the on-disk
data.
But since 3ae5fa0768 (pack-bitmap: remove bitmap_git global
variable, 2018-06-07), the caller is responsible for the
lifetime of the bitmap_index struct, and we return it from
prepare_bitmap_git() and prepare_bitmap_walk(), both of
which load the on-disk data (or return NULL).
So outside of these functions, it's not possible to have a
bitmap_index for which the loaded flag is not true. Nor is
it possible to accidentally pass an already-loaded
bitmap_index to the loading function (which is static-local
to the file).
We can drop this unnecessary and confusing flag.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>