In my cursory investigation, histogram diffs are about 2% slower than
Myers diffs. Others have probably done more detailed benchmarks. But,
in short, histogram diffs have been around for years and in a number of
cases provide obviously better looking diffs where Myers diffs are
unintelligible but the performance hit has kept them from becoming the
default.
However, there are real merge bugs we know about that have triggered on
git.git and linux.git, which I don't have a clue how to address without
the additional information that I believe is provided by histogram
diffs. See the following:
https://lore.kernel.org/git/20190816184051.GB13894@sigill.intra.peff.net/https://lore.kernel.org/git/CABPp-BHvJHpSJT7sdFwfNcPn_sOXwJi3=o14qjZS3M8Rzcxe2A@mail.gmail.com/https://lore.kernel.org/git/CABPp-BGtez4qjbtFT1hQoREfcJPmk9MzjhY5eEq1QhXT23tFOw@mail.gmail.com/
I don't like mismerges. I really don't like silent mismerges. While I
am sometimes willing to make performance and correctness tradeoff, I'm
much more interested in correctness in general. I want to fix the above
bugs. I have not yet started doing so, but I believe histogram diff at
least gives me an angle. Unfortunately, I can't rely on using the
information from histogram diff unless it's in use. And it hasn't been
used because of a few percentage performance hit.
In testcases I have looked at, merge-ort is _much_ faster than
merge-recursive for non-trivial merges/rebases/cherry-picks. As such,
this is a golden opportunity to switch out the underlying diff algorithm
(at least the one used by the merge machinery; git-diff and git-log are
separate questions); doing so will allow me to get additional data and
improved diffs, and I believe it will help me fix the above bugs at some
point in the future.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
merge_start() basically does a bunch of sanity checks, then allocates
and initializes opt->priv -- a struct merge_options_internal.
Most of the sanity checks are usable as-is. The
allocation/intialization is a bit different since merge-ort has a very
different merge_options_internal than merge-recursive, but the idea is
the same.
The weirdest part here is that merge-ort and merge-recursive use the
same struct merge_options, even though merge_options has a number of
fields that are oddly specific to merge-recursive's internal
implementation and don't even make sense with merge-ort's high-level
design (e.g. buffer_output, which merge-ort has to always do). I reused
the same data structure because:
* most the fields made sense to both merge algorithms
* making a new struct would have required making new enums or somehow
externalizing them, and that was getting messy.
* it simplifies converting the existing callers by not having to
have different code paths for merge_options setup.
I also marked detect_renames as ignored. We can revisit that later, but
in short: merge-recursive allowed turning off rename detection because
it was sometimes glacially slow. When you speed something up by a few
orders of magnitude, it's worth revisiting whether that justification is
still relevant. Besides, if folks find it's still too slow, perhaps
they have a better scaling case than I could find and maybe it turns up
some more optimizations we can add. If it still is needed as an option,
it is easy to add later.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
merge_ort_nonrecursive_internal() will be used by both
merge_inmemory_nonrecursive() and merge_inmemory_recursive(); let's
focus on it for now. It involves some setup -- merge_start() --
followed by the following chain of functions:
collect_merge_info()
This function will populate merge_options_internal's paths field,
via a call to traverse_trees() and a new callback that will be added
later.
detect_and_process_renames()
This function will detect renames, and then adjust entries in paths
to move conflict stages from old pathnames into those for new
pathnames, so that the next step doesn't have to think about renames
and just can do three-way content merging and such.
process_entries()
This function determines how to take the various stages (versions of
a file from the three different sides) and merge them, and whether
to mark the result as conflicted or cleanly merged. It also writes
out these merged file versions as it goes to create a tree.
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Set up some basic internal data structures. The only carry-over from
merge-recursive.c is call_depth, though needed_rename_limit will be
added later.
The central piece of data will definitely be the strmap "paths", which
will map every relevant pathname under consideration to either a
merged_info or a conflict_info. ("conflicted" is a strmap that is a
subset of "paths".)
merged_info contains all relevant information for a non-conflicted
entry. conflict_info contains a merged_info, plus any additional
information about a conflict such as the higher orders stages involved
and the names of the paths those came from (handy once renames get
involved). If an entry remains conflicted, the merged_info portion of a
conflict_info will later be filled with whatever version of the file
should be placed in the working directory (e.g. an as-merged-as-possible
variation that contains conflict markers).
Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Use --fixed-value in git-config calls in the git-maintenance tests, so
that the tests will continue to work even if the repo path contains
regexp metacharacters.
Signed-off-by: Josh Steadmon <steadmon@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Add a "key_value_separator" option to the "%(trailers)" pretty format,
to go along with the existing "separator" argument. In combination
these two options make it trivial to produce machine-readable (e.g. \0
and \0\0-delimited) format output.
As elaborated on in a previous commit which added "keyonly" it was
needlessly tedious to extract structured data from "%(trailers)"
before the addition of this "key_value_separator" option. As seen by
the test being added here extracting this data now becomes trivial.
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Add support for a "keyonly". This allows for easier parsing out of the
key and value. Before if you didn't want to make assumptions about how
the key was formatted. You'd need to parse it out as e.g.:
--pretty=format:'%H%x00%(trailers:separator=%x00%x00)' \
'%x00%(trailers:separator=%x00%x00,valueonly)'
And then proceed to deduce keys by looking at those two and
subtracting the value plus the hardcoded ": " separator from the
non-valueonly %(trailers) line. Now it's possible to simply do:
--pretty=format:'%H%x00%(trailers:separator=%x00%x00,keyonly)' \
'%x00%(trailers:separator=%x00%x00,valueonly)'
Which at least reduces it to a state machine where you get N keys and
correlate them with N values. Even better would be to have a way to
change the ": " delimiter to something easily machine-readable (a key
might contain ": " too). A follow-up change will add support for that.
I don't really have a use-case for just "keyonly" myself. I suppose it
would be useful in some cases as "key=*" matches case-insensitively,
so a plain "keyonly" will give you the variants of the keys you
matched. I'm mainly adding it to fix the inconsistency with
"valueonly".
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Fix %(trailers:valueonly) being a noop due to on overly eager
optimization in format_trailer_info() which skips custom formatting if
no custom options are given.
When "valueonly" was added in d9b936db52 (pretty: add support for
"valueonly" option in %(trailers), 2019-01-28) we forgot to add it to
the list of options that optimization checks for. See e.g. the
addition of "key" in 250bea0c16 (pretty: allow showing specific
trailers, 2019-01-28) for a similar change where this wasn't missed.
Thus the "valueonly" option in "%(trailers:valueonly)" was a noop and
the output was equivalent to that of a plain "%(trailers)". This
wasn't caught because the tests for it always combined it with other
options.
Fix the bug by adding !opts->value_only to the list. I initially
attempted to make this more future-proof by setting a flag if we got
to ":" in "%(trailers:" in format_commit_one() in pretty.c. However,
"%(trailers:" is also parsed in trailers_atom_parser() in
ref-filter.c.
There is an outstanding patch[1] unify those two, and such a fix, or
other future-proofing, such as changing "process_trailer_options"
flags into a bitfield, would conflict with that effort. Let's instead
do the bare minimum here as this aspect of trailers is being actively
worked on by another series.
Let's also test for a plain "valueonly" without any other options, as
well as "separator". All the other existing options on the pretty.c
path had tests where they were the only option provided. I'm also
keeping a sanity test for "%(trailers:)" being the same as
"%(trailers)". There's no reason to suspect it wouldn't be in the
current implementation, but let's keep it in the interest of black box
testing.
1. https://lore.kernel.org/git/pull.726.git.1599335291.gitgitgadget@gmail.com/
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Change the documentation for the various %(trailers) options so it
isn't repeating part of the documentation for "only" about how boolean
values are handled. Instead, let's split the description of that into
general documentation at the top.
It then suffices to refer to it by listing the options as
"opt[=<BOOL>]". I'm also changing it to upper-case "[=<BOOL>]" from
"[=val]" for consistency with "<SEP>"
It took me a couple of readings to realize that these options were
referring back to the "only" option's treatment of boolean
values.
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A regression has been introduced by a62387b (submodule.c: fetch in
submodules git directory instead of in worktree, 2018-11-28).
The scenario in which it triggers is when one has a repository with a
submodule inside a submodule like this:
superproject/middle_repo/inner_repo
Person A and B have both a clone of it, while Person B is not working
with the inner_repo and thus does not have it initialized in his working
copy.
Now person A introduces a change to the inner_repo and propagates it
through the middle_repo and the superproject.
Once person A pushed the changes and person B wants to fetch them using
"git fetch" at the superproject level, B's git call will return with
error saying:
Could not access submodule 'inner_repo'
Errors during submodule fetch:
middle_repo
Expectation is that in this case the inner submodule will be recognized
as uninitialized submodule and skipped by the git fetch command.
This used to work correctly before 'a62387b (submodule.c: fetch in
submodules git directory instead of in worktree, 2018-11-28)'.
Starting with a62387b the code wants to evaluate "is_empty_dir()" inside
.git/modules for a directory only existing in the worktree, delivering
then of course wrong return value.
This patch ensures is_empty_dir() is getting the correct path of the
uninitialized submodule by concatenation of the actual worktree and the
name of the uninitialized submodule.
The first attempt to fix this regression, in 1b7ac4e6d4 (submodules:
fix of regression on fetching of non-init subsub-repo, 2020-11-12), by
simply reverting a62387b, resulted in an infinite loop of submodule
fetches in the simpler case of a recursive fetch of a superproject with
uninitialized submodules, and so this commit was reverted in 7091499bc0
(Revert "submodules: fix of regression on fetching of non-init
subsub-repo", 2020-12-02).
To prevent future breakages, also add a regression test for this
scenario.
Signed-off-by: Peter Kaestle <peter.kaestle@nokia.com>
CC: Junio C Hamano <gitster@pobox.com>
CC: Philippe Blain <levraiphilippeblain@gmail.com>
CC: Ralf Thielow <ralf.thielow@gmail.com>
CC: Eric Sunshine <sunshine@sunshineco.us>
Reviewed-by: Philippe Blain <levraiphilippeblain@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The 'dist' target uses a versioned temp directory, $(GIT_TARNAME), into
which it copies various files added to the distribution tarball. Should
it be necessary to remove this directory in the 'clean' target, since
the name depends on $(GIT_VERSION), the current HEAD must be positioned
on the same commit as when 'make dist' was issued. Otherwise, the target
will fail to remove that directory.
Create an '.dist-tmp-dir' directory and copy the various files into this
now un-versioned directory while creating the distribution tarball. Change
the 'clean' target to remove the '.dist-tmp-dir' directory, instead of the
version dependent $(GIT_TARNAME) directory.
Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The 'clean' target includes code to remove an '*.tar.gz' file that
was the by-product of a debian build. This was originally added by
commit 5a571cdd8a (Clean generated files a bit more, to cope with
Debian build droppings., 2005-08-12). However, all support for the
'debian build' was dropped by commit 7d0e65b892 (Retire debian/
directory., 2006-01-06), which seems to have simply forgotten to
remove the 'git-core_$(GIT_VERSION)-*.tar.gz' from the 'clean'
target. Remove it now.
Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The 'clean' target is still noticeably slow on cygwin, despite the
improvements made by previous patches. For example, the second
invocation of 'make clean' below:
$ make clean >/dev/null 2>&1
$ make clean
...
make[1]: Entering directory '/home/ramsay/git/gitweb'
make[2]: Entering directory '/home/ramsay/git'
make[2]: 'GIT-VERSION-FILE' is up to date.
make[2]: Leaving directory '/home/ramsay/git'
...
$
has been timed at 10.361s on my laptop (an old core i5-4200M @ 2.50GHz,
8GB RAM, 1TB HDD).
Notice that the 'clean' target is making a nested call to the parent
Makefile to ensure that the GIT-VERSION-FILE is up-to-date. This is to
ensure that the $(GIT_VERSION) make variable is set, once that file had
been included. However, the 'clean' target does not use the $(GIT_VERSION)
variable, directly or indirectly, so it does not have any affect on what
the target removes. Therefore, the time spent on ensuring an up to date
GIT-VERSION-FILE is wasted effort.
In order to eliminate such wasted effort, use the value of the internal
$(MAKECMDGOALS) variable to only '-include ../GIT-VERSION-FILE' when the
target is not 'clean'. (This drops the time down to 8.430s, on my laptop,
giving an improvement of 18.64%).
Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The 'clean' target is still noticeably slow on cygwin, despite the
substantial improvement made by the previous patch. For example, the
second invocation of 'make clean' below:
$ make clean >/dev/null 2>&1
$ make clean
...
make[1]: Entering directory '/home/ramsay/git/Documentation'
make[2]: Entering directory '/home/ramsay/git'
make[2]: 'GIT-VERSION-FILE' is up to date.
make[2]: Leaving directory '/home/ramsay/git'
...
$
has been timed at 12.364s on my laptop (an old core i5-4200M @ 2.50GHz,
8GB RAM, 1TB HDD).
Notice that the 'clean' target is making a nested call to the parent
Makefile to ensure that the GIT-VERSION-FILE is up-to-date (prior to
the previous patch, there would have been _two_ such invocations).
This is to ensure that the $(GIT_VERSION) make variable is set, once
that file had been included. However, the 'clean' target does not use
the $(GIT_VERSION) variable, directly or indirectly, so it does not
have any affect on what the target removes. Therefore, the time spent
on ensuring an up to date GIT-VERSION-FILE is wasted effort.
In order to eliminate such wasted effort, use the value of the internal
$(MAKECMDGOALS) variable to only '-include ../GIT-VERSION-FILE' when the
target is not 'clean'. (This drops the time down to 10.361s, on my laptop,
giving an improvement of 16.20%).
Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The 'clean' target is noticeably slow on cygwin, even for a 'do-nothing'
invocation of 'make clean'. For example, the second 'make clean' below:
$ make clean >/dev/null 2>&1
$ make clean
GIT_VERSION = 2.29.0
...
make[1]: Entering directory '/home/ramsay/git/Documentation'
GEN mergetools-list.made
GEN cmd-list.made
GEN doc.dep
...
$
has been timed at 23.339s, using git v2.29.0, on my laptop (an old core
i5-4200M @ 2.50GHz, 8GB RAM, 1TB HDD).
Notice that, since the 'doc.dep' file does not exist, make takes the
time (about 8s) to generate several files in order to create the doc.dep
include file. (If an 'include' file is missing, but a target for the
said file is present in the Makefile, make will execute that target
and, if that file now exists, throw away all its internal data and
re-read and re-parse the Makefile). Having spent the time to include
the 'doc.dep' file, the 'clean' target immediately deletes those files.
The document dependencies specified in the 'doc.dep' include file,
expressed as make targets and prerequisites, do not affect what the
'clean' target removes. Therefore, the time spent in generating the
dependencies is completely wasted effort.
In order to eliminate such wasted effort, use the value of the internal
$(MAKECMDGOALS) variable to only '-include doc.dep' when the target is
not 'clean'. (This drops the time down to 12.364s, on my laptop, giving
an improvement of 47.02%).
Signed-off-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
"git imap-send" used to ignore configuration variables like
core.askpass; this has been corrected.
* nm/imap-send-use-default-config:
imap-send: parse default git config
Non-reentrant time-related library functions and ctime/asctime with
awkward calling interfaces are banned from the codebase.
* jk/banned:
banned.h: mark ctime_r() and asctime_r() as banned
banned.h: mark non-reentrant gmtime, etc as banned
"git maintenance run/start/stop" needed to be run in a repository
to hold the lockfile they use, but didn't make sure they are
actually in a repository, which has been corrected.
* rs/maintenance-run-outside-repo:
t7900: fix typo: "test_execpt_success"
maintenance: fix SEGFAULT when no repository
"fetch-pack" could pass NULL pointer to unlink(2) when it sees an
invalid filename; the error checking has been tightened to make
this impossible.
* rs/fetch-pack-invalid-lockfile:
fetch-pack: disregard invalid pack lockfiles
Code clean-up.
* ma/grep-init-default:
MyFirstObjectWalk: drop `init_walken_defaults()`
grep: copy struct in one fell swoop
grep: use designated initializers for `grep_defaults`
grep: don't set up a "default" repo for grep
The transport layer was taught to optionally exchange the session
ID assigned by the trace2 subsystem during fetch/push transactions.
* js/trace2-session-id:
receive-pack: log received client session ID
send-pack: advertise session ID in capabilities
upload-pack, serve: log received client session ID
fetch-pack: advertise session ID in capabilities
transport: log received server session ID
serve: advertise session ID in v2 capabilities
receive-pack: advertise session ID in v0 capabilities
upload-pack: advertise session ID in v0 capabilities
trace2: add a public function for getting the SID
docs: new transfer.advertiseSID option
docs: new capability to advertise session IDs
"git apply" adjusted the permission bits of working-tree files and
directories according core.sharedRepository setting by mistake and
for a long time, which has been corrected.
* mt/do-not-use-scld-in-working-tree:
apply: don't use core.sharedRepository to create working tree files
"git maintenance" command had trouble working in a directory whose
pathname contained an ERE metacharacter like '+'.
* ds/maintenance-part-3:
maintenance: use 'git config --fixed-value'
Various subcommands of "git config" that takes value_regex
learn the "--literal-value" option to take the value_regex option
as a literal string.
* ds/config-literal-value:
config doc: value-pattern is not necessarily a regexp
config: implement --fixed-value with --get*
config: plumb --fixed-value into config API
config: add --fixed-value option, un-implemented
t1300: add test for --replace-all with value-pattern
t1300: test "set all" mode with value-pattern
config: replace 'value_regex' with 'value_pattern'
config: convert multi_replace to flags
Processes that access packdata while the .idx file gets removed
(e.g. while repacking) did not fail or fall back gracefully as they
could.
* tb/idx-midx-race-fix:
midx.c: protect against disappearing packs
packfile.c: protect against disappearing indexes
"git update-ref --stdin" learns to take multiple transactions in a
single session.
* ps/update-ref-multi-transaction:
update-ref: disallow "start" for ongoing transactions
p1400: use `git-update-ref --stdin` to test multiple transactions
update-ref: allow creation of multiple transactions
t1400: avoid touching refs on filesystem
"git add -i" failed to honor custom colors configured to show
patches, which has been corrected.
* js/add-i-color-fix:
add -i: verify in the tests that colors can be overridden
add -p: prefer color.diff.context over color.diff.plain
add -i (Perl version): color header to match the C version
add -i (built-in): use the same indentation as the Perl version
add -p (built-in): do not color the progress indicator separately
add -i (built-in): use correct names to load color.diff.* config
add -i (built-in): prevent the `reset` "color" from being configured
add -i: use `reset_color` consistently
add -p (built-in): imitate `xdl_format_hunk_hdr()` generating hunk headers
add -i (built-in): send error messages to stderr
add -i (built-in): do show an error message for incorrect inputs
If the old bitmap file contains a bitmap for a given commit, then that
commit does not need help from intermediate commits in its history to
compute its final bitmap. Eject that commit from the walk and insert it
into a separate list of reusable commits that are eventually stored in
the list of commits for computing bitmaps.
This helps the repeat bitmap computation task, even if the selected
commits shift drastically. This helps when a previously-bitmapped commit
exists in the first-parent history of a newly-selected commit. Since we
stop the walk at these commits and we use a first-parent walk, it is
harder to walk "around" these bitmapped commits. It's not impossible,
but we can greatly reduce the computation time for many selected
commits.
| runtime (sec) | peak heap (GB) |
| | |
| from | with | from | with |
| scratch | existing | scratch | existing |
-----------+---------+----------+---------+-----------
last patch | 88.478 | 53.218 | 2.157 | 2.224 |
this patch | 86.681 | 16.164 | 2.157 | 2.222 |
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The previous commits improved the bitmap computation process for very
long, linear histories with many refs by removing quadratic growth in
how many objects were walked. The strategy of computing "intermediate
commits" using bitmasks for which refs can reach those commits
partitioned the poset of reachable objects so each part could be walked
exactly once. This was effective for linear histories.
However, there was a (significant) drawback: wide histories with many
refs had an explosion of memory costs to compute the commit bitmasks
during the exploration that discovers these intermediate commits. Since
these wide histories are unlikely to repeat walking objects, the benefit
of walking objects multiple times was not expensive before. But now, the
commit walk *before computing bitmaps* is incredibly expensive.
In an effort to discover a happy medium, this change reduces the walk
for intermediate commits to only the first-parent history. This focuses
the walk on how the histories converge, which still has significant
reduction in repeat object walks. It is still possible to create
quadratic behavior in this version, but it is probably less likely in
realistic data shapes.
Here is some data taken on a fresh clone of the kernel:
| runtime (sec) | peak heap (GB) |
| | |
| from | with | from | with |
| scratch | existing | scratch | existing |
-----------+---------+----------+---------+-----------
original | 64.044 | 83.241 | 2.088 | 2.194 |
last patch | 45.049 | 37.624 | 2.267 | 2.334 |
this patch | 88.478 | 53.218 | 2.157 | 2.224 |
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Helped-by: Johannes Schindelin <Johannes.Schindelin@gmx.de>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
When constructing new bitmaps, we perform a commit and tree walk in
fill_bitmap_commit() and fill_bitmap_tree(). This walk would benefit
from using existing bitmaps when available. We must track the existing
bitmaps and translate them into the new object order, but this is
generally faster than parsing trees.
In fill_bitmap_commit(), we must reorder thing somewhat. The priority
queue walks commits from newest-to-oldest, which means we correctly stop
walking when reaching a commit with a bitmap. However, if we walk trees
interleaved with the commits, then we might be parsing trees that are
actually part of a re-used bitmap. To avoid over-walking trees, add them
to a LIFO queue and walk them after exploring commits completely.
On git.git, this reduces a second immediate bitmap computation from 2.0s
to 1.0s. On linux.git, we go from 32s to 22s. On chromium's fork
network, we go from 227s to 198s.
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
'find_objects()' currently needs to interact with the bitmaps khash
pretty closely. To make 'find_objects()' read a little more
straightforwardly, remove some of the khash-level details into a new
function that describes what it does: 'add_commit_to_bitmap()'.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
A couple of callers within pack-bitmap.c duplicate logic to lookup a
given object id in the bitamps khash. Factor this out into a new
function, 'bitmap_for_commit()' to reduce some code duplication.
Make this new function non-static, since it will be used in later
commits from outside of pack-bitmap.c.
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The on-disk bitmap format has a flag to mark a bitmap to be "reused".
This is a rather curious feature, and works like this:
- a run of pack-objects would decide to mark the last 80% of the
bitmaps it generates with the reuse flag
- the next time we generate bitmaps, we'd see those reuse flags from
the last run, and mark those commits as special:
- we'd be more likely to select those commits to get bitmaps in
the new output
- when generating the bitmap for a selected commit, we'd reuse the
old bitmap as-is (rearranging the bits to match the new pack, of
course)
However, neither of these behaviors particularly makes sense.
Just because a commit happened to be bitmapped last time does not make
it a good candidate for having a bitmap this time. In particular, we may
choose bitmaps based on how recent they are in history, or whether a ref
tip points to them, and those things will change. We're better off
re-considering fresh which commits are good candidates.
Reusing the existing bitmap _is_ a reasonable thing to do to save
computation. But only reusing exact bitmaps is a weak form of this. If
we have an old bitmap for A and now want a new bitmap for its child, we
should be able to compute that only by looking at trees and that are new
to the child. But this code would consider only exact reuse (which is
perhaps why it was eager to select those commits in the first place).
Furthermore, the recent switch to the reverse-edge algorithm for
generating bitmaps dropped this optimization entirely (and yet still
performs better).
So let's do a few cleanups:
- drop the whole "reusing bitmaps" phase of generating bitmaps. It's
not helping anything, and is mostly unused code (or worse, code that
is using CPU but not doing anything useful)
- drop the use of the on-disk reuse flag to select commits to bitmap
- stop setting the on-disk reuse flag in bitmaps we generate (since
nothing respects it anymore)
We will keep a few innards of the reuse code, which will help us
implement a more capable version of the "reuse" optimization:
- simplify rebuild_existing_bitmaps() into a function that only builds
the mapping of bits between the old and new orders, but doesn't
actually convert any bitmaps
- make rebuild_bitmap() public; we'll call it lazily to convert bitmaps
as we traverse (using the mapping created above)
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The bitmap_writer_build() method calls bitmap_builder_init() to
construct a list of commits reachable from the selected commits along
with a "reverse graph". This reverse graph has edges pointing from a
commit to other commits that can reach that commit. After computing a
reachability bitmap for a commit, the values in that bitmap are then
copied to the reachability bitmaps across the edges in the reverse
graph.
We can now relax the role of the reverse graph to greatly reduce the
number of intermediate reachability bitmaps we compute during this
reverse walk. The end result is that we walk objects the same number of
times as before when constructing the reachability bitmaps, but we also
spend much less time copying bits between bitmaps and have much lower
memory pressure in the process.
The core idea is to select a set of "important" commits based on
interactions among the sets of commits reachable from each selected commit.
The first technical concept is to create a new 'commit_mask' member in the
bb_commit struct. Note that the selected commits are provided in an
ordered array. The first thing to do is to mark the ith bit in the
commit_mask for the ith selected commit. As we walk the commit-graph, we
copy the bits in a commit's commit_mask to its parents. At the end of
the walk, the ith bit in the commit_mask for a commit C stores a boolean
representing "The ith selected commit can reach C."
As we walk, we will discover non-selected commits that are important. We
will get into this later, but those important commits must also receive
bit positions, growing the width of the bitmasks as we walk. At the true
end of the walk, the ith bit means "the ith _important_ commit can reach
C."
MAXIMAL COMMITS
---------------
We use a new 'maximal' bit in the bb_commit struct to represent whether
a commit is important or not. The term "maximal" comes from the
partially-ordered set of commits in the commit-graph where C >= P if P
is a parent of C, and then extending the relationship transitively.
Instead of taking the maximal commits across the entire commit-graph, we
instead focus on selecting each commit that is maximal among commits
with the same bits on in their commit_mask. This definition is
important, so let's consider an example.
Suppose we have three selected commits A, B, and C. These are assigned
bitmasks 100, 010, and 001 to start. Each of these can be marked as
maximal immediately because they each will be the uniquely maximal
commit that contains their own bit. Keep in mind that that these commits
may have different bitmasks after the walk; for example, if B can reach
C but A cannot, then the final bitmask for C is 011. Even in these
cases, C would still be a maximal commit among all commits with the
third bit on in their masks.
Now define sets X, Y, and Z to be the sets of commits reachable from A,
B, and C, respectively. The intersections of these sets correspond to
different bitmasks:
* 100: X - (Y union Z)
* 010: Y - (X union Z)
* 001: Z - (X union Y)
* 110: (X intersect Y) - Z
* 101: (X intersect Z) - Y
* 011: (Y intersect Z) - X
* 111: X intersect Y intersect Z
This can be visualized with the following Hasse diagram:
100 010 001
| \ / \ / |
| \/ \/ |
| /\ /\ |
| / \ / \ |
110 101 011
\___ | ___/
\ | /
111
Some of these bitmasks may not be represented, depending on the topology
of the commit-graph. In fact, we are counting on it, since the number of
possible bitmasks is exponential in the number of selected commits, but
is also limited by the total number of commits. In practice, very few
bitmasks are possible because most commits converge on a common "trunk"
in the commit history.
With this three-bit example, we wish to find commits that are maximal
for each bitmask. How can we identify this as we are walking?
As we walk, we visit a commit C. Since we are walking the commits in
topo-order, we know that C is visited after all of its children are
visited. Thus, when we get C from the revision walk we inspect the
'maximal' property of its bb_data and use that to determine if C is truly
important. Its commit_mask is also nearly final. If C is not one of the
originally-selected commits, then assign a bit position to C (by
incrementing num_maximal) and set that bit on in commit_mask. See
"MULTIPLE MAXIMAL COMMITS" below for more detail on this.
Now that the commit C is known to be maximal or not, consider each
parent P of C. Compute two new values:
* c_not_p : true if and only if the commit_mask for C contains a bit
that is not contained in the commit_mask for P.
* p_not_c : true if and only if the commit_mask for P contains a bit
that is not contained in the commit_mask for P.
If c_not_p is false, then P already has all of the bits that C would
provide to its commit_mask. In this case, move on to other parents as C
has nothing to contribute to P's state that was not already provided by
other children of P.
We continue with the case that c_not_p is true. This means there are
bits in C's commit_mask to copy to P's commit_mask, so use bitmap_or()
to add those bits.
If p_not_c is also true, then set the maximal bit for P to one. This means
that if no other commit has P as a parent, then P is definitely maximal.
This is because no child had the same bitmask. It is important to think
about the maximal bit for P at this point as a temporary state: "P is
maximal based on current information."
In contrast, if p_not_c is false, then set the maximal bit for P to
zero. Further, clear all reverse_edges for P since any edges that were
previously assigned to P are no longer important. P will gain all
reverse edges based on C.
The final thing we need to do is to update the reverse edges for P.
These reverse edges respresent "which closest maximal commits
contributed bits to my commit_mask?" Since C contributed bits to P's
commit_mask in this case, C must add to the reverse edges of P.
If C is maximal, then C is a 'closest' maximal commit that contributed
bits to P. Add C to P's reverse_edges list.
Otherwise, C has a list of maximal commits that contributed bits to its
bitmask (and this list is exactly one element). Add all of these items
to P's reverse_edges list. Be careful to ignore duplicates here.
After inspecting all parents P for a commit C, we can clear the
commit_mask for C. This reduces the memory load to be limited to the
"width" of the commit graph.
Consider our ABC/XYZ example from earlier and let's inspect the state of
the commits for an interesting bitmask, say 011. Suppose that D is the
only maximal commit with this bitmask (in the first three bits). All
other commits with bitmask 011 have D as the only entry in their
reverse_edges list. D's reverse_edges list contains B and C.
COMPUTING REACHABILITY BITMAPS
------------------------------
Now that we have our definition, let's zoom out and consider what
happens with our new reverse graph when computing reachability bitmaps.
We walk the reverse graph in reverse-topo-order, so we visit commits
with largest commit_masks first. After we compute the reachability
bitmap for a commit C, we push the bits in that bitmap to each commit D
in the reverse edge list for C. Then, when we finally visit D we already
have the bits for everything reachable from maximal commits that D can
reach and we only need to walk the objects in the set-difference.
In our ABC/XYZ example, when we finally walk for the commit A we only
need to walk commits with bitmask equal to A's bitmask. If that bitmask
is 100, then we are only walking commits in X - (Y union Z) because the
bitmap already contains the bits for objects reachable from (X intersect
Y) union (X intersect Z) (i.e. the bits from the reachability bitmaps
for the maximal commits with bitmasks 110 and 101).
The behavior is intended to walk each commit (and the trees that commit
introduces) at most once while allocating and copying fewer reachability
bitmaps. There is one caveat: what happens when there are multiple
maximal commits with the same bitmask, with respect to the initial set
of selected commits?
MULTIPLE MAXIMAL COMMITS
------------------------
Earlier, we mentioned that when we discover a new maximal commit, we
assign a new bit position to that commit and set that bit position to
one for that commit. This is absolutely important for interesting
commit-graphs such as git/git and torvalds/linux. The reason is due to
the existence of "butterflies" in the commit-graph partial order.
Here is an example of four commits forming a butterfly:
I J
|\ /|
| \/ |
| /\ |
|/ \|
M N
\ /
|/
Q
Here, I and J both have parents M and N. In general, these do not need
to be exact parent relationships, but reachability relationships. The
most important part is that M and N cannot reach each other, so they are
independent in the partial order. If I had commit_mask 10 and J had
commit_mask 01, then M and N would both be assigned commit_mask 11 and
be maximal commits with the bitmask 11. Then, what happens when M and N
can both reach a commit Q? If Q is also assigned the bitmask 11, then it
is not maximal but is reachable from both M and N.
While this is not necessarily a deal-breaker for our abstract definition
of finding maximal commits according to a given bitmask, we have a few
issues that can come up in our larger picture of constructing
reachability bitmaps.
In particular, if we do not also consider Q to be a "maximal" commit,
then we will walk commits reachable from Q twice: once when computing
the reachability bitmap for M and another time when computing the
reachability bitmap for N. This becomes much worse if the topology
continues this pattern with multiple butterflies.
The solution has already been mentioned: each of M and N are assigned
their own bits to the bitmask and hence they become uniquely maximal for
their bitmasks. Finally, Q also becomes maximal and thus we do not need
to walk its commits multiple times. The final bitmasks for these commits
are as follows:
I:10 J:01
|\ /|
| \ _____/ |
| /\____ |
|/ \ |
M:111 N:1101
\ /
Q:1111
Further, Q's reverse edge list is { M, N }, while M and N both have
reverse edge list { I, J }.
PERFORMANCE MEASUREMENTS
------------------------
Now that we've spent a LOT of time on the theory of this algorithm,
let's show that this is actually worth all that effort.
To test the performance, use GIT_TRACE2_PERF=1 when running
'git repack -abd' in a repository with no existing reachability bitmaps.
This avoids any issues with keeping existing bitmaps to skew the
numbers.
Inspect the "building_bitmaps_total" region in the trace2 output to
focus on the portion of work that is affected by this change. Here are
the performance comparisons for a few repositories. The timings are for
the following versions of Git: "multi" is the timing from before any
reverse graph is constructed, where we might perform multiple
traversals. "reverse" is for the previous change where the reverse graph
has every reachable commit. Finally "maximal" is the version introduced
here where the reverse graph only contains the maximal commits.
Repository: git/git
multi: 2.628 sec
reverse: 2.344 sec
maximal: 2.047 sec
Repository: torvalds/linux
multi: 64.7 sec
reverse: 205.3 sec
maximal: 44.7 sec
So in all cases we've not only recovered any time lost to switching to
the reverse-edge algorithm, but we come out ahead of "multi" in all
cases. Likewise, peak heap has gone back to something reasonable:
Repository: torvalds/linux
multi: 2.087 GB
reverse: 3.141 GB
maximal: 2.288 GB
While I do not have access to full fork networks on GitHub, Peff has run
this algorithm on the chromium/chromium fork network and reported a
change from 3 hours to ~233 seconds. That network is particularly
beneficial for this approach because it has a long, linear history along
with many tags. The "multi" approach was obviously quadratic and the new
approach is linear.
Helped-by: Jeff King <peff@peff.net>
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Helped-by: Johannes Schindelin <Johannes.Schindelin@gmx.de>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Before 'load_bitmap_entries_v1()' reads an actual EWAH bitmap, it should
check that it can safely do so by ensuring that there are at least 6
bytes available to be read (four for the commit's index position, and
then two more for the xor offset and flags, respectively).
Likewise, it should check that the commit index it read refers to a
legitimate object in the pack.
The first fix catches a truncation bug that was exposed when testing,
and the second is purely precautionary.
There are some possible future improvements, not pursued here. They are:
- Computing the correct boundary of the bitmap itself in the caller
and ensuring that we don't read past it. This may or may not be
worth it, since in a truncation situation, all bets are off: (is the
trailer still there and the bitmap entries malformed, or is the
trailer truncated?). The best we can do is try to read what's there
as if it's correct data (and protect ourselves when it's obviously
bogus).
- Avoid the magic "6" by teaching read_be32() and read_u8() (both of
which are custom helpers for this function) to check sizes before
advancing the pointers.
- Adding more tests in this area. Testing these truncation situations
are remarkably fragile to even subtle changes in the bitmap
generation. So, the resulting tests are likely to be quite brittle.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The bitmap_builder_init() method walks the reachable commits in
topological order and constructs a "reverse graph" along the way. At the
moment, this reverse graph contains an edge from commit A to commit B if
and only if A is a parent of B. Thus, the name "children" is appropriate
for for this reverse graph.
In the next change, we will repurpose the reverse graph to not be
directly-adjacent commits in the commit-graph, but instead a more
abstract relationship. The previous changes have already incorporated
the necessary updates to fill_bitmap_commit() that allow these edges to
not be immediate children.
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The current rev-list tests that check the bitmap data only work on HEAD
instead of multiple branches. Expand the test cases to handle both
'master' and 'other' branches.
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Helped-by: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
It can be helpful to check if a commit_list contains a commit. Use
pointer equality, assuming lookup_commit() was used.
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The bitmap_is_subset() function checks if the 'self' bitmap contains any
bitmaps that are not on in the 'other' bitmap. Up until this patch, it
had a declaration, but no implementation or callers. A subsequent patch
will want this function, so implement it here.
Helped-by: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
The current implementation of bitmap_writer_build() creates a
reachability bitmap for every walked commit. After computing a bitmap
for a commit, those bits are pushed to an in-progress bitmap for its
children.
fill_bitmap_commit() assumes the bits corresponding to objects
reachable from the parents of a commit are already set. This means that
when visiting a new commit, we only have to walk the objects reachable
between it and any of its parents.
A future change to bitmap_writer_build() will relax this condition so
not all parents have their bits set. Prepare for that by having
'fill_bitmap_commit()' walk parents until reaching commits whose bits
are already set. Then, walk the trees for these commits as well.
This has no functional change with the current implementation of
bitmap_writer_build().
Signed-off-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Our algorithm to generate reachability bitmaps walks through the commit
graph from the bottom up, passing bitmap data from each commit to its
descendants. For a linear stretch of history like:
A -- B -- C
our sequence of steps is:
- compute the bitmap for A by walking its trees, etc
- duplicate A's bitmap as a starting point for B; we can now free A's
bitmap, since we only needed it as an intermediate result
- OR in any extra objects that B can reach into its bitmap
- duplicate B's bitmap as a starting point for C; likewise, free B's
bitmap
- OR in objects for C, and so on...
Rather than duplicating bitmaps and immediately freeing the original, we
can just pass ownership from commit to commit. Note that this doesn't
always work:
- the recipient may be a merge which already has an intermediate
bitmap from its other ancestor. In that case we have to OR our
result into it. Note that the first ancestor to reach the merge does
get to pass ownership, though.
- we may have multiple children; we can only pass ownership to one of
them
However, it happens often enough and copying bitmaps is expensive enough
that this provides a noticeable speedup. On a clone of linux.git, this
reduces the time to generate bitmaps from 205s to 70s. This is about the
same amount of time it took to generate bitmaps using our old "many
traversals" algorithm (the previous commit measures the identical
scenario as taking 63s). It unfortunately provides only a very modest
reduction in the peak memory usage, though.
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>