#include "test-tool.h" #include "cache.h" #include "strvec.h" #include "run-command.h" #include "exec-cmd.h" #include "config.h" typedef int(fn_unit_test)(int argc, const char **argv); struct unit_test { fn_unit_test *ut_fn; const char *ut_name; const char *ut_usage; }; #define MyOk 0 #define MyError 1 static int get_i(int *p_value, const char *data) { char *endptr; if (!data || !*data) return MyError; *p_value = strtol(data, &endptr, 10); if (*endptr || errno == ERANGE) return MyError; return MyOk; } /* * Cause process to exit with the requested value via "return". * * Rely on test-tool.c:cmd_main() to call trace2_cmd_exit() * with our result. * * Test harness can confirm: * [] the process-exit value. * [] the "code" field in the "exit" trace2 event. * [] the "code" field in the "atexit" trace2 event. * [] the "name" field in the "cmd_name" trace2 event. * [] "def_param" events for all of the "interesting" pre-defined * config settings. */ static int ut_001return(int argc, const char **argv) { int rc; if (get_i(&rc, argv[0])) die("expect "); return rc; } /* * Cause the process to exit with the requested value via "exit()". * * Test harness can confirm: * [] the "code" field in the "exit" trace2 event. * [] the "code" field in the "atexit" trace2 event. * [] the "name" field in the "cmd_name" trace2 event. * [] "def_param" events for all of the "interesting" pre-defined * config settings. */ static int ut_002exit(int argc, const char **argv) { int rc; if (get_i(&rc, argv[0])) die("expect "); exit(rc); } /* * Send an "error" event with each value in argv. Normally, git only issues * a single "error" event immediately before issuing an "exit" event (such * as in die() or BUG()), but multiple "error" events are allowed. * * Test harness can confirm: * [] a trace2 "error" event for each value in argv. * [] the "name" field in the "cmd_name" trace2 event. * [] (optional) the file:line in the "exit" event refers to this function. */ static int ut_003error(int argc, const char **argv) { int k; if (!argv[0] || !*argv[0]) die("expect "); for (k = 0; k < argc; k++) error("%s", argv[k]); return 0; } /* * Run a child process and wait for it to finish and exit with its return code. * test-tool trace2 004child [] * * For example: * test-tool trace2 004child git version * test-tool trace2 004child test-tool trace2 001return 0 * test-tool trace2 004child test-tool trace2 004child test-tool trace2 004child * test-tool trace2 004child git -c alias.xyz=version xyz * * Test harness can confirm: * [] the "name" field in the "cmd_name" trace2 event. * [] that the outer process has a single component SID (or depth "d0" in * the PERF stream). * [] that "child_start" and "child_exit" events are generated for the child. * [] if the child process is an instrumented executable: * [] that "version", "start", ..., "exit", and "atexit" events are * generated by the child process. * [] that the child process events have a multiple component SID (or * depth "dN+1" in the PERF stream). * [] that the child exit code is propagated to the parent process "exit" * and "atexit" events.. * [] (optional) that the "t_abs" field in the child process "atexit" event * is less than the "t_rel" field in the "child_exit" event of the parent * process. * [] if the child process is like the alias example above, * [] (optional) the child process attempts to run "git-xyx" as a dashed * command. * [] the child process emits an "alias" event with "xyz" => "version" * [] the child process runs "git version" as a child process. * [] the child process has a 3 component SID (or depth "d2" in the PERF * stream). */ static int ut_004child(int argc, const char **argv) { int result; /* * Allow empty so we can do arbitrarily deep * command nesting and let the last one be null. */ if (!argc) return 0; result = run_command_v_opt(argv, 0); exit(result); } /* * Exec a git command. This may either create a child process (Windows) * or replace the existing process. * test-tool trace2 005exec * * For example: * test-tool trace2 005exec version * * Test harness can confirm (on Windows): * [] the "name" field in the "cmd_name" trace2 event. * [] that the outer process has a single component SID (or depth "d0" in * the PERF stream). * [] that "exec" and "exec_result" events are generated for the child * process (since the Windows compatibility layer fakes an exec() with * a CreateProcess(), WaitForSingleObject(), and exit()). * [] that the child process has multiple component SID (or depth "dN+1" * in the PERF stream). * * Test harness can confirm (on platforms with a real exec() function): * [] TODO talk about process replacement and how it affects SID. */ static int ut_005exec(int argc, const char **argv) { int result; if (!argc) return 0; result = execv_git_cmd(argv); return result; } static int ut_006data(int argc, const char **argv) { const char *usage_error = "expect [ [...]]"; if (argc % 3 != 0) die("%s", usage_error); while (argc) { if (!argv[0] || !*argv[0] || !argv[1] || !*argv[1] || !argv[2] || !*argv[2]) die("%s", usage_error); trace2_data_string(argv[0], the_repository, argv[1], argv[2]); argv += 3; argc -= 3; } return 0; } static int ut_007BUG(int argc, const char **argv) { /* * Exercise BUG() to ensure that the message is printed to trace2. */ BUG("the bug message"); } static int ut_008bug(int argc, const char **argv) { bug("a bug message"); bug("another bug message"); BUG_if_bug("an explicit BUG_if_bug() following bug() call(s) is nice, but not required"); return 0; } static int ut_009bug_BUG(int argc, const char **argv) { bug("a bug message"); bug("another bug message"); /* The BUG_if_bug(...) isn't here, but we'll spot bug() calls on exit()! */ return 0; } static int ut_010bug_BUG(int argc, const char **argv) { bug("a %s message", "bug"); BUG("a %s message", "BUG"); } /* * Single-threaded timer test. Create several intervals using the * TEST1 timer. The test script can verify that an aggregate Trace2 * "timer" event is emitted indicating that we started+stopped the * timer the requested number of times. */ static int ut_100timer(int argc, const char **argv) { const char *usage_error = "expect "; int count = 0; int delay = 0; int k; if (argc != 2) die("%s", usage_error); if (get_i(&count, argv[0])) die("%s", usage_error); if (get_i(&delay, argv[1])) die("%s", usage_error); for (k = 0; k < count; k++) { trace2_timer_start(TRACE2_TIMER_ID_TEST1); sleep_millisec(delay); trace2_timer_stop(TRACE2_TIMER_ID_TEST1); } return 0; } struct ut_101_data { int count; int delay; }; static void *ut_101timer_thread_proc(void *_ut_101_data) { struct ut_101_data *data = _ut_101_data; int k; trace2_thread_start("ut_101"); for (k = 0; k < data->count; k++) { trace2_timer_start(TRACE2_TIMER_ID_TEST2); sleep_millisec(data->delay); trace2_timer_stop(TRACE2_TIMER_ID_TEST2); } trace2_thread_exit(); return NULL; } /* * Multi-threaded timer test. Create several threads that each create * several intervals using the TEST2 timer. The test script can verify * that an individual Trace2 "th_timer" events for each thread and an * aggregate "timer" event are generated. */ static int ut_101timer(int argc, const char **argv) { const char *usage_error = "expect "; struct ut_101_data data = { 0, 0 }; int nr_threads = 0; int k; pthread_t *pids = NULL; if (argc != 3) die("%s", usage_error); if (get_i(&data.count, argv[0])) die("%s", usage_error); if (get_i(&data.delay, argv[1])) die("%s", usage_error); if (get_i(&nr_threads, argv[2])) die("%s", usage_error); CALLOC_ARRAY(pids, nr_threads); for (k = 0; k < nr_threads; k++) { if (pthread_create(&pids[k], NULL, ut_101timer_thread_proc, &data)) die("failed to create thread[%d]", k); } for (k = 0; k < nr_threads; k++) { if (pthread_join(pids[k], NULL)) die("failed to join thread[%d]", k); } free(pids); return 0; } /* * Single-threaded counter test. Add several values to the TEST1 counter. * The test script can verify that the final sum is reported in the "counter" * event. */ static int ut_200counter(int argc, const char **argv) { const char *usage_error = "expect [ [...]]"; int value; int k; if (argc < 1) die("%s", usage_error); for (k = 0; k < argc; k++) { if (get_i(&value, argv[k])) die("invalid value[%s] -- %s", argv[k], usage_error); trace2_counter_add(TRACE2_COUNTER_ID_TEST1, value); } return 0; } /* * Multi-threaded counter test. Create seveal threads that each increment * the TEST2 global counter. The test script can verify that an individual * "th_counter" event is generated with a partial sum for each thread and * that a final aggregate "counter" event is generated. */ struct ut_201_data { int v1; int v2; }; static void *ut_201counter_thread_proc(void *_ut_201_data) { struct ut_201_data *data = _ut_201_data; trace2_thread_start("ut_201"); trace2_counter_add(TRACE2_COUNTER_ID_TEST2, data->v1); trace2_counter_add(TRACE2_COUNTER_ID_TEST2, data->v2); trace2_thread_exit(); return NULL; } static int ut_201counter(int argc, const char **argv) { const char *usage_error = "expect "; struct ut_201_data data = { 0, 0 }; int nr_threads = 0; int k; pthread_t *pids = NULL; if (argc != 3) die("%s", usage_error); if (get_i(&data.v1, argv[0])) die("%s", usage_error); if (get_i(&data.v2, argv[1])) die("%s", usage_error); if (get_i(&nr_threads, argv[2])) die("%s", usage_error); CALLOC_ARRAY(pids, nr_threads); for (k = 0; k < nr_threads; k++) { if (pthread_create(&pids[k], NULL, ut_201counter_thread_proc, &data)) die("failed to create thread[%d]", k); } for (k = 0; k < nr_threads; k++) { if (pthread_join(pids[k], NULL)) die("failed to join thread[%d]", k); } free(pids); return 0; } /* * Usage: * test-tool trace2 * test-tool trace2 * ... */ #define USAGE_PREFIX "test-tool trace2" /* clang-format off */ static struct unit_test ut_table[] = { { ut_001return, "001return", "" }, { ut_002exit, "002exit", "" }, { ut_003error, "003error", "+" }, { ut_004child, "004child", "[]" }, { ut_005exec, "005exec", "" }, { ut_006data, "006data", "[ ]+" }, { ut_007BUG, "007bug", "" }, { ut_008bug, "008bug", "" }, { ut_009bug_BUG, "009bug_BUG","" }, { ut_010bug_BUG, "010bug_BUG","" }, { ut_100timer, "100timer", " " }, { ut_101timer, "101timer", " " }, { ut_200counter, "200counter", " [ [ [...]]]" }, { ut_201counter, "201counter", " " }, }; /* clang-format on */ /* clang-format off */ #define for_each_ut(k, ut_k) \ for (k = 0, ut_k = &ut_table[k]; \ k < ARRAY_SIZE(ut_table); \ k++, ut_k = &ut_table[k]) /* clang-format on */ static int print_usage(void) { int k; struct unit_test *ut_k; fprintf(stderr, "usage:\n"); for_each_ut (k, ut_k) fprintf(stderr, "\t%s %s %s\n", USAGE_PREFIX, ut_k->ut_name, ut_k->ut_usage); return 129; } /* * Issue various trace2 events for testing. * * We assume that these trace2 routines has already been called: * [] trace2_initialize() [common-main.c:main()] * [] trace2_cmd_start() [common-main.c:main()] * [] trace2_cmd_name() [test-tool.c:cmd_main()] * [] tracd2_cmd_list_config() [test-tool.c:cmd_main()] * So that: * [] the various trace2 streams are open. * [] the process SID has been created. * [] the "version" event has been generated. * [] the "start" event has been generated. * [] the "cmd_name" event has been generated. * [] this writes various "def_param" events for interesting config values. * * We return from here and let test-tool.c::cmd_main() pass the exit * code to common-main.c::main(), which will use it to call * trace2_cmd_exit(). */ int cmd__trace2(int argc, const char **argv) { int k; struct unit_test *ut_k; argc--; /* skip over "trace2" arg */ argv++; if (argc) for_each_ut (k, ut_k) if (!strcmp(argv[0], ut_k->ut_name)) return ut_k->ut_fn(argc - 1, argv + 1); return print_usage(); }