/* * name-hash.c * * Hashing names in the index state * * Copyright (C) 2008 Linus Torvalds */ #define NO_THE_INDEX_COMPATIBILITY_MACROS #include "cache.h" #include "thread-utils.h" struct dir_entry { struct hashmap_entry ent; struct dir_entry *parent; int nr; unsigned int namelen; char name[FLEX_ARRAY]; }; static int dir_entry_cmp(const void *unused_cmp_data, const void *entry, const void *entry_or_key, const void *keydata) { const struct dir_entry *e1 = entry; const struct dir_entry *e2 = entry_or_key; const char *name = keydata; return e1->namelen != e2->namelen || strncasecmp(e1->name, name ? name : e2->name, e1->namelen); } static struct dir_entry *find_dir_entry__hash(struct index_state *istate, const char *name, unsigned int namelen, unsigned int hash) { struct dir_entry key; hashmap_entry_init(&key, hash); key.namelen = namelen; return hashmap_get(&istate->dir_hash, &key, name); } static struct dir_entry *find_dir_entry(struct index_state *istate, const char *name, unsigned int namelen) { return find_dir_entry__hash(istate, name, namelen, memihash(name, namelen)); } static struct dir_entry *hash_dir_entry(struct index_state *istate, struct cache_entry *ce, int namelen) { /* * Throw each directory component in the hash for quick lookup * during a git status. Directory components are stored without their * closing slash. Despite submodules being a directory, they never * reach this point, because they are stored * in index_state.name_hash (as ordinary cache_entries). */ struct dir_entry *dir; /* get length of parent directory */ while (namelen > 0 && !is_dir_sep(ce->name[namelen - 1])) namelen--; if (namelen <= 0) return NULL; namelen--; /* lookup existing entry for that directory */ dir = find_dir_entry(istate, ce->name, namelen); if (!dir) { /* not found, create it and add to hash table */ FLEX_ALLOC_MEM(dir, name, ce->name, namelen); hashmap_entry_init(dir, memihash(ce->name, namelen)); dir->namelen = namelen; hashmap_add(&istate->dir_hash, dir); /* recursively add missing parent directories */ dir->parent = hash_dir_entry(istate, ce, namelen); } return dir; } static void add_dir_entry(struct index_state *istate, struct cache_entry *ce) { /* Add reference to the directory entry (and parents if 0). */ struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce)); while (dir && !(dir->nr++)) dir = dir->parent; } static void remove_dir_entry(struct index_state *istate, struct cache_entry *ce) { /* * Release reference to the directory entry. If 0, remove and continue * with parent directory. */ struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce)); while (dir && !(--dir->nr)) { struct dir_entry *parent = dir->parent; hashmap_remove(&istate->dir_hash, dir, NULL); free(dir); dir = parent; } } static void hash_index_entry(struct index_state *istate, struct cache_entry *ce) { if (ce->ce_flags & CE_HASHED) return; ce->ce_flags |= CE_HASHED; hashmap_entry_init(ce, memihash(ce->name, ce_namelen(ce))); hashmap_add(&istate->name_hash, ce); if (ignore_case) add_dir_entry(istate, ce); } static int cache_entry_cmp(const void *unused_cmp_data, const void *entry, const void *entry_or_key, const void *remove) { const struct cache_entry *ce1 = entry; const struct cache_entry *ce2 = entry_or_key; /* * For remove_name_hash, find the exact entry (pointer equality); for * index_file_exists, find all entries with matching hash code and * decide whether the entry matches in same_name. */ return remove ? !(ce1 == ce2) : 0; } static int lazy_try_threaded = 1; static int lazy_nr_dir_threads; /* * Set a minimum number of cache_entries that we will handle per * thread and use that to decide how many threads to run (upto * the number on the system). * * For guidance setting the lower per-thread bound, see: * t/helper/test-lazy-init-name-hash --analyze */ #define LAZY_THREAD_COST (2000) /* * We use n mutexes to guard n partitions of the "istate->dir_hash" * hashtable. Since "find" and "insert" operations will hash to a * particular bucket and modify/search a single chain, we can say * that "all chains mod n" are guarded by the same mutex -- rather * than having a single mutex to guard the entire table. (This does * require that we disable "rehashing" on the hashtable.) * * So, a larger value here decreases the probability of a collision * and the time that each thread must wait for the mutex. */ #define LAZY_MAX_MUTEX (32) static pthread_mutex_t *lazy_dir_mutex_array; /* * An array of lazy_entry items is used by the n threads in * the directory parse (first) phase to (lock-free) store the * intermediate results. These values are then referenced by * the 2 threads in the second phase. */ struct lazy_entry { struct dir_entry *dir; unsigned int hash_dir; unsigned int hash_name; }; /* * Decide if we want to use threads (if available) to load * the hash tables. We set "lazy_nr_dir_threads" to zero when * it is not worth it. */ static int lookup_lazy_params(struct index_state *istate) { int nr_cpus; lazy_nr_dir_threads = 0; if (!lazy_try_threaded) return 0; /* * If we are respecting case, just use the original * code to build the "istate->name_hash". We don't * need the complexity here. */ if (!ignore_case) return 0; nr_cpus = online_cpus(); if (nr_cpus < 2) return 0; if (istate->cache_nr < 2 * LAZY_THREAD_COST) return 0; if (istate->cache_nr < nr_cpus * LAZY_THREAD_COST) nr_cpus = istate->cache_nr / LAZY_THREAD_COST; lazy_nr_dir_threads = nr_cpus; return lazy_nr_dir_threads; } /* * Initialize n mutexes for use when searching and inserting * into "istate->dir_hash". All "dir" threads are trying * to insert partial pathnames into the hash as they iterate * over their portions of the index, so lock contention is * high. * * However, the hashmap is going to put items into bucket * chains based on their hash values. Use that to create n * mutexes and lock on mutex[bucket(hash) % n]. This will * decrease the collision rate by (hopefully) by a factor of n. */ static void init_dir_mutex(void) { int j; lazy_dir_mutex_array = xcalloc(LAZY_MAX_MUTEX, sizeof(pthread_mutex_t)); for (j = 0; j < LAZY_MAX_MUTEX; j++) init_recursive_mutex(&lazy_dir_mutex_array[j]); } static void cleanup_dir_mutex(void) { int j; for (j = 0; j < LAZY_MAX_MUTEX; j++) pthread_mutex_destroy(&lazy_dir_mutex_array[j]); free(lazy_dir_mutex_array); } static void lock_dir_mutex(int j) { pthread_mutex_lock(&lazy_dir_mutex_array[j]); } static void unlock_dir_mutex(int j) { pthread_mutex_unlock(&lazy_dir_mutex_array[j]); } static inline int compute_dir_lock_nr( const struct hashmap *map, unsigned int hash) { return hashmap_bucket(map, hash) % LAZY_MAX_MUTEX; } static struct dir_entry *hash_dir_entry_with_parent_and_prefix( struct index_state *istate, struct dir_entry *parent, struct strbuf *prefix) { struct dir_entry *dir; unsigned int hash; int lock_nr; /* * Either we have a parent directory and path with slash(es) * or the directory is an immediate child of the root directory. */ assert((parent != NULL) ^ (strchr(prefix->buf, '/') == NULL)); if (parent) hash = memihash_cont(parent->ent.hash, prefix->buf + parent->namelen, prefix->len - parent->namelen); else hash = memihash(prefix->buf, prefix->len); lock_nr = compute_dir_lock_nr(&istate->dir_hash, hash); lock_dir_mutex(lock_nr); dir = find_dir_entry__hash(istate, prefix->buf, prefix->len, hash); if (!dir) { FLEX_ALLOC_MEM(dir, name, prefix->buf, prefix->len); hashmap_entry_init(dir, hash); dir->namelen = prefix->len; dir->parent = parent; hashmap_add(&istate->dir_hash, dir); if (parent) { unlock_dir_mutex(lock_nr); /* All I really need here is an InterlockedIncrement(&(parent->nr)) */ lock_nr = compute_dir_lock_nr(&istate->dir_hash, parent->ent.hash); lock_dir_mutex(lock_nr); parent->nr++; } } unlock_dir_mutex(lock_nr); return dir; } /* * handle_range_1() and handle_range_dir() are derived from * clear_ce_flags_1() and clear_ce_flags_dir() in unpack-trees.c * and handle the iteration over the entire array of index entries. * They use recursion for adjacent entries in the same parent * directory. */ static int handle_range_1( struct index_state *istate, int k_start, int k_end, struct dir_entry *parent, struct strbuf *prefix, struct lazy_entry *lazy_entries); static int handle_range_dir( struct index_state *istate, int k_start, int k_end, struct dir_entry *parent, struct strbuf *prefix, struct lazy_entry *lazy_entries, struct dir_entry **dir_new_out) { int rc, k; int input_prefix_len = prefix->len; struct dir_entry *dir_new; dir_new = hash_dir_entry_with_parent_and_prefix(istate, parent, prefix); strbuf_addch(prefix, '/'); /* * Scan forward in the index array for index entries having the same * path prefix (that are also in this directory). */ if (k_start + 1 >= k_end) k = k_end; else if (strncmp(istate->cache[k_start + 1]->name, prefix->buf, prefix->len) > 0) k = k_start + 1; else if (strncmp(istate->cache[k_end - 1]->name, prefix->buf, prefix->len) == 0) k = k_end; else { int begin = k_start; int end = k_end; while (begin < end) { int mid = (begin + end) >> 1; int cmp = strncmp(istate->cache[mid]->name, prefix->buf, prefix->len); if (cmp == 0) /* mid has same prefix; look in second part */ begin = mid + 1; else if (cmp > 0) /* mid is past group; look in first part */ end = mid; else die("cache entry out of order"); } k = begin; } /* * Recurse and process what we can of this subset [k_start, k). */ rc = handle_range_1(istate, k_start, k, dir_new, prefix, lazy_entries); strbuf_setlen(prefix, input_prefix_len); *dir_new_out = dir_new; return rc; } static int handle_range_1( struct index_state *istate, int k_start, int k_end, struct dir_entry *parent, struct strbuf *prefix, struct lazy_entry *lazy_entries) { int input_prefix_len = prefix->len; int k = k_start; while (k < k_end) { struct cache_entry *ce_k = istate->cache[k]; const char *name, *slash; if (prefix->len && strncmp(ce_k->name, prefix->buf, prefix->len)) break; name = ce_k->name + prefix->len; slash = strchr(name, '/'); if (slash) { int len = slash - name; int processed; struct dir_entry *dir_new; strbuf_add(prefix, name, len); processed = handle_range_dir(istate, k, k_end, parent, prefix, lazy_entries, &dir_new); if (processed) { k += processed; strbuf_setlen(prefix, input_prefix_len); continue; } strbuf_addch(prefix, '/'); processed = handle_range_1(istate, k, k_end, dir_new, prefix, lazy_entries); k += processed; strbuf_setlen(prefix, input_prefix_len); continue; } /* * It is too expensive to take a lock to insert "ce_k" * into "istate->name_hash" and increment the ref-count * on the "parent" dir. So we defer actually updating * permanent data structures until phase 2 (where we * can change the locking requirements) and simply * accumulate our current results into the lazy_entries * data array). * * We do not need to lock the lazy_entries array because * we have exclusive access to the cells in the range * [k_start,k_end) that this thread was given. */ lazy_entries[k].dir = parent; if (parent) { lazy_entries[k].hash_name = memihash_cont( parent->ent.hash, ce_k->name + parent->namelen, ce_namelen(ce_k) - parent->namelen); lazy_entries[k].hash_dir = parent->ent.hash; } else { lazy_entries[k].hash_name = memihash(ce_k->name, ce_namelen(ce_k)); } k++; } return k - k_start; } struct lazy_dir_thread_data { pthread_t pthread; struct index_state *istate; struct lazy_entry *lazy_entries; int k_start; int k_end; }; static void *lazy_dir_thread_proc(void *_data) { struct lazy_dir_thread_data *d = _data; struct strbuf prefix = STRBUF_INIT; handle_range_1(d->istate, d->k_start, d->k_end, NULL, &prefix, d->lazy_entries); strbuf_release(&prefix); return NULL; } struct lazy_name_thread_data { pthread_t pthread; struct index_state *istate; struct lazy_entry *lazy_entries; }; static void *lazy_name_thread_proc(void *_data) { struct lazy_name_thread_data *d = _data; int k; for (k = 0; k < d->istate->cache_nr; k++) { struct cache_entry *ce_k = d->istate->cache[k]; ce_k->ce_flags |= CE_HASHED; hashmap_entry_init(ce_k, d->lazy_entries[k].hash_name); hashmap_add(&d->istate->name_hash, ce_k); } return NULL; } static inline void lazy_update_dir_ref_counts( struct index_state *istate, struct lazy_entry *lazy_entries) { int k; for (k = 0; k < istate->cache_nr; k++) { if (lazy_entries[k].dir) lazy_entries[k].dir->nr++; } } static void threaded_lazy_init_name_hash( struct index_state *istate) { int nr_each; int k_start; int t; struct lazy_entry *lazy_entries; struct lazy_dir_thread_data *td_dir; struct lazy_name_thread_data *td_name; if (!HAVE_THREADS) return; k_start = 0; nr_each = DIV_ROUND_UP(istate->cache_nr, lazy_nr_dir_threads); lazy_entries = xcalloc(istate->cache_nr, sizeof(struct lazy_entry)); td_dir = xcalloc(lazy_nr_dir_threads, sizeof(struct lazy_dir_thread_data)); td_name = xcalloc(1, sizeof(struct lazy_name_thread_data)); init_dir_mutex(); /* * Phase 1: * Build "istate->dir_hash" using n "dir" threads (and a read-only index). */ for (t = 0; t < lazy_nr_dir_threads; t++) { struct lazy_dir_thread_data *td_dir_t = td_dir + t; td_dir_t->istate = istate; td_dir_t->lazy_entries = lazy_entries; td_dir_t->k_start = k_start; k_start += nr_each; if (k_start > istate->cache_nr) k_start = istate->cache_nr; td_dir_t->k_end = k_start; if (pthread_create(&td_dir_t->pthread, NULL, lazy_dir_thread_proc, td_dir_t)) die("unable to create lazy_dir_thread"); } for (t = 0; t < lazy_nr_dir_threads; t++) { struct lazy_dir_thread_data *td_dir_t = td_dir + t; if (pthread_join(td_dir_t->pthread, NULL)) die("unable to join lazy_dir_thread"); } /* * Phase 2: * Iterate over all index entries and add them to the "istate->name_hash" * using a single "name" background thread. * (Testing showed it wasn't worth running more than 1 thread for this.) * * Meanwhile, finish updating the parent directory ref-counts for each * index entry using the current thread. (This step is very fast and * doesn't need threading.) */ td_name->istate = istate; td_name->lazy_entries = lazy_entries; if (pthread_create(&td_name->pthread, NULL, lazy_name_thread_proc, td_name)) die("unable to create lazy_name_thread"); lazy_update_dir_ref_counts(istate, lazy_entries); if (pthread_join(td_name->pthread, NULL)) die("unable to join lazy_name_thread"); cleanup_dir_mutex(); free(td_name); free(td_dir); free(lazy_entries); } static void lazy_init_name_hash(struct index_state *istate) { if (istate->name_hash_initialized) return; trace_performance_enter(); hashmap_init(&istate->name_hash, cache_entry_cmp, NULL, istate->cache_nr); hashmap_init(&istate->dir_hash, dir_entry_cmp, NULL, istate->cache_nr); if (lookup_lazy_params(istate)) { /* * Disable item counting and automatic rehashing because * we do per-chain (mod n) locking rather than whole hashmap * locking and we need to prevent the table-size from changing * and bucket items from being redistributed. */ hashmap_disable_item_counting(&istate->dir_hash); threaded_lazy_init_name_hash(istate); hashmap_enable_item_counting(&istate->dir_hash); } else { int nr; for (nr = 0; nr < istate->cache_nr; nr++) hash_index_entry(istate, istate->cache[nr]); } istate->name_hash_initialized = 1; trace_performance_leave("initialize name hash"); } /* * A test routine for t/helper/ sources. * * Returns the number of threads used or 0 when * the non-threaded code path was used. * * Requesting threading WILL NOT override guards * in lookup_lazy_params(). */ int test_lazy_init_name_hash(struct index_state *istate, int try_threaded) { lazy_nr_dir_threads = 0; lazy_try_threaded = try_threaded; lazy_init_name_hash(istate); return lazy_nr_dir_threads; } void add_name_hash(struct index_state *istate, struct cache_entry *ce) { if (istate->name_hash_initialized) hash_index_entry(istate, ce); } void remove_name_hash(struct index_state *istate, struct cache_entry *ce) { if (!istate->name_hash_initialized || !(ce->ce_flags & CE_HASHED)) return; ce->ce_flags &= ~CE_HASHED; hashmap_remove(&istate->name_hash, ce, ce); if (ignore_case) remove_dir_entry(istate, ce); } static int slow_same_name(const char *name1, int len1, const char *name2, int len2) { if (len1 != len2) return 0; while (len1) { unsigned char c1 = *name1++; unsigned char c2 = *name2++; len1--; if (c1 != c2) { c1 = toupper(c1); c2 = toupper(c2); if (c1 != c2) return 0; } } return 1; } static int same_name(const struct cache_entry *ce, const char *name, int namelen, int icase) { int len = ce_namelen(ce); /* * Always do exact compare, even if we want a case-ignoring comparison; * we do the quick exact one first, because it will be the common case. */ if (len == namelen && !memcmp(name, ce->name, len)) return 1; if (!icase) return 0; return slow_same_name(name, namelen, ce->name, len); } int index_dir_exists(struct index_state *istate, const char *name, int namelen) { struct dir_entry *dir; lazy_init_name_hash(istate); dir = find_dir_entry(istate, name, namelen); return dir && dir->nr; } void adjust_dirname_case(struct index_state *istate, char *name) { const char *startPtr = name; const char *ptr = startPtr; lazy_init_name_hash(istate); while (*ptr) { while (*ptr && *ptr != '/') ptr++; if (*ptr == '/') { struct dir_entry *dir; dir = find_dir_entry(istate, name, ptr - name); if (dir) { memcpy((void *)startPtr, dir->name + (startPtr - name), ptr - startPtr); startPtr = ptr + 1; } ptr++; } } } struct cache_entry *index_file_exists(struct index_state *istate, const char *name, int namelen, int icase) { struct cache_entry *ce; lazy_init_name_hash(istate); ce = hashmap_get_from_hash(&istate->name_hash, memihash(name, namelen), NULL); while (ce) { if (same_name(ce, name, namelen, icase)) return ce; ce = hashmap_get_next(&istate->name_hash, ce); } return NULL; } void free_name_hash(struct index_state *istate) { if (!istate->name_hash_initialized) return; istate->name_hash_initialized = 0; hashmap_free(&istate->name_hash, 0); hashmap_free(&istate->dir_hash, 1); }