#include "cache.h" #include "run-command.h" #include "exec_cmd.h" #include "sigchain.h" #include "argv-array.h" #ifndef SHELL_PATH # define SHELL_PATH "/bin/sh" #endif void child_process_init(struct child_process *child) { memset(child, 0, sizeof(*child)); argv_array_init(&child->args); argv_array_init(&child->env_array); } struct child_to_clean { pid_t pid; struct child_to_clean *next; }; static struct child_to_clean *children_to_clean; static int installed_child_cleanup_handler; static void cleanup_children(int sig) { while (children_to_clean) { struct child_to_clean *p = children_to_clean; children_to_clean = p->next; kill(p->pid, sig); free(p); } } static void cleanup_children_on_signal(int sig) { cleanup_children(sig); sigchain_pop(sig); raise(sig); } static void cleanup_children_on_exit(void) { cleanup_children(SIGTERM); } static void mark_child_for_cleanup(pid_t pid) { struct child_to_clean *p = xmalloc(sizeof(*p)); p->pid = pid; p->next = children_to_clean; children_to_clean = p; if (!installed_child_cleanup_handler) { atexit(cleanup_children_on_exit); sigchain_push_common(cleanup_children_on_signal); installed_child_cleanup_handler = 1; } } static void clear_child_for_cleanup(pid_t pid) { struct child_to_clean **pp; for (pp = &children_to_clean; *pp; pp = &(*pp)->next) { struct child_to_clean *clean_me = *pp; if (clean_me->pid == pid) { *pp = clean_me->next; free(clean_me); return; } } } static inline void close_pair(int fd[2]) { close(fd[0]); close(fd[1]); } #ifndef GIT_WINDOWS_NATIVE static inline void dup_devnull(int to) { int fd = open("/dev/null", O_RDWR); if (fd < 0) die_errno(_("open /dev/null failed")); if (dup2(fd, to) < 0) die_errno(_("dup2(%d,%d) failed"), fd, to); close(fd); } #endif static char *locate_in_PATH(const char *file) { const char *p = getenv("PATH"); struct strbuf buf = STRBUF_INIT; if (!p || !*p) return NULL; while (1) { const char *end = strchrnul(p, ':'); strbuf_reset(&buf); /* POSIX specifies an empty entry as the current directory. */ if (end != p) { strbuf_add(&buf, p, end - p); strbuf_addch(&buf, '/'); } strbuf_addstr(&buf, file); if (!access(buf.buf, F_OK)) return strbuf_detach(&buf, NULL); if (!*end) break; p = end + 1; } strbuf_release(&buf); return NULL; } static int exists_in_PATH(const char *file) { char *r = locate_in_PATH(file); free(r); return r != NULL; } int sane_execvp(const char *file, char * const argv[]) { if (!execvp(file, argv)) return 0; /* cannot happen ;-) */ /* * When a command can't be found because one of the directories * listed in $PATH is unsearchable, execvp reports EACCES, but * careful usability testing (read: analysis of occasional bug * reports) reveals that "No such file or directory" is more * intuitive. * * We avoid commands with "/", because execvp will not do $PATH * lookups in that case. * * The reassignment of EACCES to errno looks like a no-op below, * but we need to protect against exists_in_PATH overwriting errno. */ if (errno == EACCES && !strchr(file, '/')) errno = exists_in_PATH(file) ? EACCES : ENOENT; else if (errno == ENOTDIR && !strchr(file, '/')) errno = ENOENT; return -1; } static const char **prepare_shell_cmd(const char **argv) { int argc, nargc = 0; const char **nargv; for (argc = 0; argv[argc]; argc++) ; /* just counting */ /* +1 for NULL, +3 for "sh -c" plus extra $0 */ nargv = xmalloc(sizeof(*nargv) * (argc + 1 + 3)); if (argc < 1) die("BUG: shell command is empty"); if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) { #ifndef GIT_WINDOWS_NATIVE nargv[nargc++] = SHELL_PATH; #else nargv[nargc++] = "sh"; #endif nargv[nargc++] = "-c"; if (argc < 2) nargv[nargc++] = argv[0]; else { struct strbuf arg0 = STRBUF_INIT; strbuf_addf(&arg0, "%s \"$@\"", argv[0]); nargv[nargc++] = strbuf_detach(&arg0, NULL); } } for (argc = 0; argv[argc]; argc++) nargv[nargc++] = argv[argc]; nargv[nargc] = NULL; return nargv; } #ifndef GIT_WINDOWS_NATIVE static int execv_shell_cmd(const char **argv) { const char **nargv = prepare_shell_cmd(argv); trace_argv_printf(nargv, "trace: exec:"); sane_execvp(nargv[0], (char **)nargv); free(nargv); return -1; } #endif #ifndef GIT_WINDOWS_NATIVE static int child_err = 2; static int child_notifier = -1; static void notify_parent(void) { /* * execvp failed. If possible, we'd like to let start_command * know, so failures like ENOENT can be handled right away; but * otherwise, finish_command will still report the error. */ xwrite(child_notifier, "", 1); } static NORETURN void die_child(const char *err, va_list params) { vwritef(child_err, "fatal: ", err, params); exit(128); } static void error_child(const char *err, va_list params) { vwritef(child_err, "error: ", err, params); } #endif static inline void set_cloexec(int fd) { int flags = fcntl(fd, F_GETFD); if (flags >= 0) fcntl(fd, F_SETFD, flags | FD_CLOEXEC); } static int wait_or_whine(pid_t pid, const char *argv0) { int status, code = -1; pid_t waiting; int failed_errno = 0; while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR) ; /* nothing */ if (waiting < 0) { failed_errno = errno; error("waitpid for %s failed: %s", argv0, strerror(errno)); } else if (waiting != pid) { error("waitpid is confused (%s)", argv0); } else if (WIFSIGNALED(status)) { code = WTERMSIG(status); if (code != SIGINT && code != SIGQUIT) error("%s died of signal %d", argv0, code); /* * This return value is chosen so that code & 0xff * mimics the exit code that a POSIX shell would report for * a program that died from this signal. */ code += 128; } else if (WIFEXITED(status)) { code = WEXITSTATUS(status); /* * Convert special exit code when execvp failed. */ if (code == 127) { code = -1; failed_errno = ENOENT; } } else { error("waitpid is confused (%s)", argv0); } clear_child_for_cleanup(pid); errno = failed_errno; return code; } int start_command(struct child_process *cmd) { int need_in, need_out, need_err; int fdin[2], fdout[2], fderr[2]; int failed_errno; char *str; if (!cmd->argv) cmd->argv = cmd->args.argv; if (!cmd->env) cmd->env = cmd->env_array.argv; /* * In case of errors we must keep the promise to close FDs * that have been passed in via ->in and ->out. */ need_in = !cmd->no_stdin && cmd->in < 0; if (need_in) { if (pipe(fdin) < 0) { failed_errno = errno; if (cmd->out > 0) close(cmd->out); str = "standard input"; goto fail_pipe; } cmd->in = fdin[1]; } need_out = !cmd->no_stdout && !cmd->stdout_to_stderr && cmd->out < 0; if (need_out) { if (pipe(fdout) < 0) { failed_errno = errno; if (need_in) close_pair(fdin); else if (cmd->in) close(cmd->in); str = "standard output"; goto fail_pipe; } cmd->out = fdout[0]; } need_err = !cmd->no_stderr && cmd->err < 0; if (need_err) { if (pipe(fderr) < 0) { failed_errno = errno; if (need_in) close_pair(fdin); else if (cmd->in) close(cmd->in); if (need_out) close_pair(fdout); else if (cmd->out) close(cmd->out); str = "standard error"; fail_pipe: error("cannot create %s pipe for %s: %s", str, cmd->argv[0], strerror(failed_errno)); argv_array_clear(&cmd->args); argv_array_clear(&cmd->env_array); errno = failed_errno; return -1; } cmd->err = fderr[0]; } trace_argv_printf(cmd->argv, "trace: run_command:"); fflush(NULL); #ifndef GIT_WINDOWS_NATIVE { int notify_pipe[2]; if (pipe(notify_pipe)) notify_pipe[0] = notify_pipe[1] = -1; cmd->pid = fork(); failed_errno = errno; if (!cmd->pid) { /* * Redirect the channel to write syscall error messages to * before redirecting the process's stderr so that all die() * in subsequent call paths use the parent's stderr. */ if (cmd->no_stderr || need_err) { child_err = dup(2); set_cloexec(child_err); } set_die_routine(die_child); set_error_routine(error_child); close(notify_pipe[0]); set_cloexec(notify_pipe[1]); child_notifier = notify_pipe[1]; atexit(notify_parent); if (cmd->no_stdin) dup_devnull(0); else if (need_in) { dup2(fdin[0], 0); close_pair(fdin); } else if (cmd->in) { dup2(cmd->in, 0); close(cmd->in); } if (cmd->no_stderr) dup_devnull(2); else if (need_err) { dup2(fderr[1], 2); close_pair(fderr); } else if (cmd->err > 1) { dup2(cmd->err, 2); close(cmd->err); } if (cmd->no_stdout) dup_devnull(1); else if (cmd->stdout_to_stderr) dup2(2, 1); else if (need_out) { dup2(fdout[1], 1); close_pair(fdout); } else if (cmd->out > 1) { dup2(cmd->out, 1); close(cmd->out); } if (cmd->dir && chdir(cmd->dir)) die_errno("exec '%s': cd to '%s' failed", cmd->argv[0], cmd->dir); if (cmd->env) { for (; *cmd->env; cmd->env++) { if (strchr(*cmd->env, '=')) putenv((char *)*cmd->env); else unsetenv(*cmd->env); } } if (cmd->git_cmd) execv_git_cmd(cmd->argv); else if (cmd->use_shell) execv_shell_cmd(cmd->argv); else sane_execvp(cmd->argv[0], (char *const*) cmd->argv); if (errno == ENOENT) { if (!cmd->silent_exec_failure) error("cannot run %s: %s", cmd->argv[0], strerror(ENOENT)); exit(127); } else { die_errno("cannot exec '%s'", cmd->argv[0]); } } if (cmd->pid < 0) error("cannot fork() for %s: %s", cmd->argv[0], strerror(errno)); else if (cmd->clean_on_exit) mark_child_for_cleanup(cmd->pid); /* * Wait for child's execvp. If the execvp succeeds (or if fork() * failed), EOF is seen immediately by the parent. Otherwise, the * child process sends a single byte. * Note that use of this infrastructure is completely advisory, * therefore, we keep error checks minimal. */ close(notify_pipe[1]); if (read(notify_pipe[0], ¬ify_pipe[1], 1) == 1) { /* * At this point we know that fork() succeeded, but execvp() * failed. Errors have been reported to our stderr. */ wait_or_whine(cmd->pid, cmd->argv[0]); failed_errno = errno; cmd->pid = -1; } close(notify_pipe[0]); } #else { int fhin = 0, fhout = 1, fherr = 2; const char **sargv = cmd->argv; if (cmd->no_stdin) fhin = open("/dev/null", O_RDWR); else if (need_in) fhin = dup(fdin[0]); else if (cmd->in) fhin = dup(cmd->in); if (cmd->no_stderr) fherr = open("/dev/null", O_RDWR); else if (need_err) fherr = dup(fderr[1]); else if (cmd->err > 2) fherr = dup(cmd->err); if (cmd->no_stdout) fhout = open("/dev/null", O_RDWR); else if (cmd->stdout_to_stderr) fhout = dup(fherr); else if (need_out) fhout = dup(fdout[1]); else if (cmd->out > 1) fhout = dup(cmd->out); if (cmd->git_cmd) cmd->argv = prepare_git_cmd(cmd->argv); else if (cmd->use_shell) cmd->argv = prepare_shell_cmd(cmd->argv); cmd->pid = mingw_spawnvpe(cmd->argv[0], cmd->argv, (char**) cmd->env, cmd->dir, fhin, fhout, fherr); failed_errno = errno; if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT)) error("cannot spawn %s: %s", cmd->argv[0], strerror(errno)); if (cmd->clean_on_exit && cmd->pid >= 0) mark_child_for_cleanup(cmd->pid); if (cmd->git_cmd) free(cmd->argv); cmd->argv = sargv; if (fhin != 0) close(fhin); if (fhout != 1) close(fhout); if (fherr != 2) close(fherr); } #endif if (cmd->pid < 0) { if (need_in) close_pair(fdin); else if (cmd->in) close(cmd->in); if (need_out) close_pair(fdout); else if (cmd->out) close(cmd->out); if (need_err) close_pair(fderr); else if (cmd->err) close(cmd->err); argv_array_clear(&cmd->args); argv_array_clear(&cmd->env_array); errno = failed_errno; return -1; } if (need_in) close(fdin[0]); else if (cmd->in) close(cmd->in); if (need_out) close(fdout[1]); else if (cmd->out) close(cmd->out); if (need_err) close(fderr[1]); else if (cmd->err) close(cmd->err); return 0; } int finish_command(struct child_process *cmd) { int ret = wait_or_whine(cmd->pid, cmd->argv[0]); argv_array_clear(&cmd->args); argv_array_clear(&cmd->env_array); return ret; } int run_command(struct child_process *cmd) { int code = start_command(cmd); if (code) return code; return finish_command(cmd); } int run_command_v_opt(const char **argv, int opt) { return run_command_v_opt_cd_env(argv, opt, NULL, NULL); } int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env) { struct child_process cmd = CHILD_PROCESS_INIT; cmd.argv = argv; cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0; cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0; cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0; cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0; cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0; cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0; cmd.dir = dir; cmd.env = env; return run_command(&cmd); } #ifndef NO_PTHREADS static pthread_t main_thread; static int main_thread_set; static pthread_key_t async_key; static pthread_key_t async_die_counter; static void *run_thread(void *data) { struct async *async = data; intptr_t ret; pthread_setspecific(async_key, async); ret = async->proc(async->proc_in, async->proc_out, async->data); return (void *)ret; } static NORETURN void die_async(const char *err, va_list params) { vreportf("fatal: ", err, params); if (!pthread_equal(main_thread, pthread_self())) { struct async *async = pthread_getspecific(async_key); if (async->proc_in >= 0) close(async->proc_in); if (async->proc_out >= 0) close(async->proc_out); pthread_exit((void *)128); } exit(128); } static int async_die_is_recursing(void) { void *ret = pthread_getspecific(async_die_counter); pthread_setspecific(async_die_counter, (void *)1); return ret != NULL; } #else static struct { void (**handlers)(void); size_t nr; size_t alloc; } git_atexit_hdlrs; static int git_atexit_installed; static void git_atexit_dispatch(void) { size_t i; for (i=git_atexit_hdlrs.nr ; i ; i--) git_atexit_hdlrs.handlers[i-1](); } static void git_atexit_clear(void) { free(git_atexit_hdlrs.handlers); memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs)); git_atexit_installed = 0; } #undef atexit int git_atexit(void (*handler)(void)) { ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc); git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler; if (!git_atexit_installed) { if (atexit(&git_atexit_dispatch)) return -1; git_atexit_installed = 1; } return 0; } #define atexit git_atexit #endif int start_async(struct async *async) { int need_in, need_out; int fdin[2], fdout[2]; int proc_in, proc_out; need_in = async->in < 0; if (need_in) { if (pipe(fdin) < 0) { if (async->out > 0) close(async->out); return error("cannot create pipe: %s", strerror(errno)); } async->in = fdin[1]; } need_out = async->out < 0; if (need_out) { if (pipe(fdout) < 0) { if (need_in) close_pair(fdin); else if (async->in) close(async->in); return error("cannot create pipe: %s", strerror(errno)); } async->out = fdout[0]; } if (need_in) proc_in = fdin[0]; else if (async->in) proc_in = async->in; else proc_in = -1; if (need_out) proc_out = fdout[1]; else if (async->out) proc_out = async->out; else proc_out = -1; #ifdef NO_PTHREADS /* Flush stdio before fork() to avoid cloning buffers */ fflush(NULL); async->pid = fork(); if (async->pid < 0) { error("fork (async) failed: %s", strerror(errno)); goto error; } if (!async->pid) { if (need_in) close(fdin[1]); if (need_out) close(fdout[0]); git_atexit_clear(); exit(!!async->proc(proc_in, proc_out, async->data)); } mark_child_for_cleanup(async->pid); if (need_in) close(fdin[0]); else if (async->in) close(async->in); if (need_out) close(fdout[1]); else if (async->out) close(async->out); #else if (!main_thread_set) { /* * We assume that the first time that start_async is called * it is from the main thread. */ main_thread_set = 1; main_thread = pthread_self(); pthread_key_create(&async_key, NULL); pthread_key_create(&async_die_counter, NULL); set_die_routine(die_async); set_die_is_recursing_routine(async_die_is_recursing); } if (proc_in >= 0) set_cloexec(proc_in); if (proc_out >= 0) set_cloexec(proc_out); async->proc_in = proc_in; async->proc_out = proc_out; { int err = pthread_create(&async->tid, NULL, run_thread, async); if (err) { error("cannot create thread: %s", strerror(err)); goto error; } } #endif return 0; error: if (need_in) close_pair(fdin); else if (async->in) close(async->in); if (need_out) close_pair(fdout); else if (async->out) close(async->out); return -1; } int finish_async(struct async *async) { #ifdef NO_PTHREADS return wait_or_whine(async->pid, "child process"); #else void *ret = (void *)(intptr_t)(-1); if (pthread_join(async->tid, &ret)) error("pthread_join failed"); return (int)(intptr_t)ret; #endif } char *find_hook(const char *name) { char *path = git_path("hooks/%s", name); if (access(path, X_OK) < 0) path = NULL; return path; } int run_hook_ve(const char *const *env, const char *name, va_list args) { struct child_process hook = CHILD_PROCESS_INIT; const char *p; p = find_hook(name); if (!p) return 0; argv_array_push(&hook.args, p); while ((p = va_arg(args, const char *))) argv_array_push(&hook.args, p); hook.env = env; hook.no_stdin = 1; hook.stdout_to_stderr = 1; return run_command(&hook); } int run_hook_le(const char *const *env, const char *name, ...) { va_list args; int ret; va_start(args, name); ret = run_hook_ve(env, name, args); va_end(args); return ret; } int capture_command(struct child_process *cmd, struct strbuf *buf, size_t hint) { cmd->out = -1; if (start_command(cmd) < 0) return -1; if (strbuf_read(buf, cmd->out, hint) < 0) { close(cmd->out); finish_command(cmd); /* throw away exit code */ return -1; } close(cmd->out); return finish_command(cmd); }