/* * * Copyright (C) 1999 David Mazieres (dm@uun.org) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * USA * */ /* Faster generic_fls */ /* (c) 2002, D.Phillips and Sistina Software */ #include "rabinpoly.h" #define MSB64 0x8000000000000000ULL static inline unsigned fls8(unsigned n) { return n & 0xf0? n & 0xc0? (n >> 7) + 7: (n >> 5) + 5: n & 0x0c? (n >> 3) + 3: n - ((n + 1) >> 2); } static inline unsigned fls16(unsigned n) { return n & 0xff00? fls8(n >> 8) + 8: fls8(n); } static inline unsigned fls32(unsigned n) { return n & 0xffff0000? fls16(n >> 16) + 16: fls16(n); } static inline unsigned fls64(unsigned long long n) /* should be u64 */ { return n & 0xffffffff00000000ULL? fls32(n >> 32) + 32: fls32(n); } static u_int64_t polymod (u_int64_t nh, u_int64_t nl, u_int64_t d); static void polymult (u_int64_t *php, u_int64_t *plp, u_int64_t x, u_int64_t y); static u_int64_t polymmult (u_int64_t x, u_int64_t y, u_int64_t d); static u_int64_t poly = 0xb15e234bd3792f63ull; // Actual polynomial static u_int64_t T[256]; // Lookup table for mod static int shift; u_int64_t append8 (u_int64_t p, u_char m) { return ((p << 8) | m) ^ T[p >> shift]; } static u_int64_t polymod (u_int64_t nh, u_int64_t nl, u_int64_t d) { int i, k; assert (d); k = fls64 (d) - 1; d <<= 63 - k; if (nh) { if (nh & MSB64) nh ^= d; for (i = 62; i >= 0; i--) if (nh & 1ULL << i) { nh ^= d >> (63 - i); nl ^= d << (i + 1); } } for (i = 63; i >= k; i--) if (nl & 1ULL << i) nl ^= d >> (63 - i); return nl; } static void polymult (u_int64_t *php, u_int64_t *plp, u_int64_t x, u_int64_t y) { int i; u_int64_t ph = 0, pl = 0; if (x & 1) pl = y; for (i = 1; i < 64; i++) if (x & (1ULL << i)) { ph ^= y >> (64 - i); pl ^= y << i; } if (php) *php = ph; if (plp) *plp = pl; } static u_int64_t polymmult (u_int64_t x, u_int64_t y, u_int64_t d) { u_int64_t h, l; polymult (&h, &l, x, y); return polymod (h, l, d); } static int size = RABIN_WINDOW_SIZE; static u_int64_t fingerprint = 0; static int bufpos = -1; static u_int64_t U[256]; static u_char buf[RABIN_WINDOW_SIZE]; void rabin_init () { u_int64_t sizeshift = 1; u_int64_t T1; int xshift; int i, j; assert (poly >= 0x100); xshift = fls64 (poly) - 1; shift = xshift - 8; T1 = polymod (0, 1ULL << xshift, poly); for (j = 0; j < 256; j++) T[j] = polymmult (j, T1, poly) | ((u_int64_t) j << xshift); for (i = 1; i < size; i++) sizeshift = append8 (sizeshift, 0); for (i = 0; i < 256; i++) U[i] = polymmult (i, sizeshift, poly); bzero (buf, sizeof (buf)); } void rabin_reset () { rabin_init(); fingerprint = 0; bzero (buf, sizeof (buf)); } u_int64_t rabin_slide8 (u_char m) { u_char om; if (++bufpos >= size) bufpos = 0; om = buf[bufpos]; buf[bufpos] = m; fingerprint = append8 (fingerprint ^ U[om], m); return fingerprint; }