git-commit-vandalism/contrib/coccinelle
brian m. carlson 974e4a85e3 cache: make oidcpy always copy GIT_MAX_RAWSZ bytes
There are some situations in which we want to store an object ID into
struct object_id without the_hash_algo necessarily being set correctly.
One such case is when cloning a repository, where we must read refs from
the remote side without having a repository from which to read the
preferred algorithm.

In this cases, we may have the_hash_algo set to SHA-1, which is the
default, but read refs into struct object_id that are SHA-256. When
copying these values, we will want to copy them completely, not just the
first 20 bytes. Consequently, make sure that oidcpy copies the maximum
number of bytes at all times, regardless of the setting of
the_hash_algo.

Since oidcpy and hashcpy are no longer functionally identical, remove
the Cocinelle object_id transformations that convert from one into the
other.

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-01-15 09:57:41 -08:00
..
.gitignore gitignore: ignore output files of coccicheck make target 2016-09-27 14:02:19 -07:00
array.cocci coccinelle: remove parentheses that become unnecessary 2017-10-02 13:02:26 +09:00
commit.cocci coccinelle: use <...> for function exclusion 2018-08-29 11:32:49 -07:00
free.cocci coccinelle: polish FREE_AND_NULL rules 2017-06-29 10:46:16 -07:00
object_id.cocci cache: make oidcpy always copy GIT_MAX_RAWSZ bytes 2019-01-15 09:57:41 -08:00
preincr.cocci cocci: simplify "if (++u > 1)" to "if (u++)" 2018-10-24 10:10:10 +09:00
qsort.cocci remove unnecessary check before QSORT 2016-09-29 15:42:18 -07:00
README coccicheck: introduce 'pending' semantic patches 2018-11-14 11:22:36 +09:00
strbuf.cocci Merge branch 'rs/cocci-strbuf-addf-to-addstr' 2018-02-15 14:55:44 -08:00
swap.cocci add SWAP macro 2017-01-30 14:07:45 -08:00
xstrdup_or_null.cocci abspath: add absolute_pathdup() 2017-01-26 14:51:06 -08:00

This directory provides examples of Coccinelle (http://coccinelle.lip6.fr/)
semantic patches that might be useful to developers.

There are two types of semantic patches:

 * Using the semantic transformation to check for bad patterns in the code;
   The target 'make coccicheck' is designed to check for these patterns and
   it is expected that any resulting patch indicates a regression.
   The patches resulting from 'make coccicheck' are small and infrequent,
   so once they are found, they can be sent to the mailing list as per usual.

   Example for introducing new patterns:
   67947c34ae (convert "hashcmp() != 0" to "!hasheq()", 2018-08-28)
   b84c783882 (fsck: s/++i > 1/i++/, 2018-10-24)

   Example of fixes using this approach:
   248f66ed8e (run-command: use strbuf_addstr() for adding a string to
               a strbuf, 2018-03-25)
   f919ffebed (Use MOVE_ARRAY, 2018-01-22)

   These types of semantic patches are usually part of testing, c.f.
   0860a7641b (travis-ci: fail if Coccinelle static analysis found something
               to transform, 2018-07-23)

 * Using semantic transformations in large scale refactorings throughout
   the code base.

   When applying the semantic patch into a real patch, sending it to the
   mailing list in the usual way, such a patch would be expected to have a
   lot of textual and semantic conflicts as such large scale refactorings
   change function signatures that are used widely in the code base.
   A textual conflict would arise if surrounding code near any call of such
   function changes. A semantic conflict arises when other patch series in
   flight introduce calls to such functions.

   So to aid these large scale refactorings, semantic patches can be used.
   However we do not want to store them in the same place as the checks for
   bad patterns, as then automated builds would fail.
   That is why semantic patches 'contrib/coccinelle/*.pending.cocci'
   are ignored for checks, and can be applied using 'make coccicheck-pending'.

   This allows to expose plans of pending large scale refactorings without
   impacting the bad pattern checks.