3dff5379bf
Signed-off-by: Junio C Hamano <junkio@cox.net>
225 lines
7.3 KiB
ArmAsm
225 lines
7.3 KiB
ArmAsm
/*
|
|
* SHA-1 implementation for PowerPC.
|
|
*
|
|
* Copyright (C) 2005 Paul Mackerras <paulus@samba.org>
|
|
*/
|
|
|
|
/*
|
|
* PowerPC calling convention:
|
|
* %r0 - volatile temp
|
|
* %r1 - stack pointer.
|
|
* %r2 - reserved
|
|
* %r3-%r12 - Incoming arguments & return values; volatile.
|
|
* %r13-%r31 - Callee-save registers
|
|
* %lr - Return address, volatile
|
|
* %ctr - volatile
|
|
*
|
|
* Register usage in this routine:
|
|
* %r0 - temp
|
|
* %r3 - argument (pointer to 5 words of SHA state)
|
|
* %r4 - argument (pointer to data to hash)
|
|
* %r5 - Constant K in SHA round (initially number of blocks to hash)
|
|
* %r6-%r10 - Working copies of SHA variables A..E (actually E..A order)
|
|
* %r11-%r26 - Data being hashed W[].
|
|
* %r27-%r31 - Previous copies of A..E, for final add back.
|
|
* %ctr - loop count
|
|
*/
|
|
|
|
|
|
/*
|
|
* We roll the registers for A, B, C, D, E around on each
|
|
* iteration; E on iteration t is D on iteration t+1, and so on.
|
|
* We use registers 6 - 10 for this. (Registers 27 - 31 hold
|
|
* the previous values.)
|
|
*/
|
|
#define RA(t) (((t)+4)%5+6)
|
|
#define RB(t) (((t)+3)%5+6)
|
|
#define RC(t) (((t)+2)%5+6)
|
|
#define RD(t) (((t)+1)%5+6)
|
|
#define RE(t) (((t)+0)%5+6)
|
|
|
|
/* We use registers 11 - 26 for the W values */
|
|
#define W(t) ((t)%16+11)
|
|
|
|
/* Register 5 is used for the constant k */
|
|
|
|
/*
|
|
* The basic SHA-1 round function is:
|
|
* E += ROTL(A,5) + F(B,C,D) + W[i] + K; B = ROTL(B,30)
|
|
* Then the variables are renamed: (A,B,C,D,E) = (E,A,B,C,D).
|
|
*
|
|
* Every 20 rounds, the function F() and the constant K changes:
|
|
* - 20 rounds of f0(b,c,d) = "bit wise b ? c : d" = (^b & d) + (b & c)
|
|
* - 20 rounds of f1(b,c,d) = b^c^d = (b^d)^c
|
|
* - 20 rounds of f2(b,c,d) = majority(b,c,d) = (b&d) + ((b^d)&c)
|
|
* - 20 more rounds of f1(b,c,d)
|
|
*
|
|
* These are all scheduled for near-optimal performance on a G4.
|
|
* The G4 is a 3-issue out-of-order machine with 3 ALUs, but it can only
|
|
* *consider* starting the oldest 3 instructions per cycle. So to get
|
|
* maximum performance out of it, you have to treat it as an in-order
|
|
* machine. Which means interleaving the computation round t with the
|
|
* computation of W[t+4].
|
|
*
|
|
* The first 16 rounds use W values loaded directly from memory, while the
|
|
* remaining 64 use values computed from those first 16. We preload
|
|
* 4 values before starting, so there are three kinds of rounds:
|
|
* - The first 12 (all f0) also load the W values from memory.
|
|
* - The next 64 compute W(i+4) in parallel. 8*f0, 20*f1, 20*f2, 16*f1.
|
|
* - The last 4 (all f1) do not do anything with W.
|
|
*
|
|
* Therefore, we have 6 different round functions:
|
|
* STEPD0_LOAD(t,s) - Perform round t and load W(s). s < 16
|
|
* STEPD0_UPDATE(t,s) - Perform round t and compute W(s). s >= 16.
|
|
* STEPD1_UPDATE(t,s)
|
|
* STEPD2_UPDATE(t,s)
|
|
* STEPD1(t) - Perform round t with no load or update.
|
|
*
|
|
* The G5 is more fully out-of-order, and can find the parallelism
|
|
* by itself. The big limit is that it has a 2-cycle ALU latency, so
|
|
* even though it's 2-way, the code has to be scheduled as if it's
|
|
* 4-way, which can be a limit. To help it, we try to schedule the
|
|
* read of RA(t) as late as possible so it doesn't stall waiting for
|
|
* the previous round's RE(t-1), and we try to rotate RB(t) as early
|
|
* as possible while reading RC(t) (= RB(t-1)) as late as possible.
|
|
*/
|
|
|
|
/* the initial loads. */
|
|
#define LOADW(s) \
|
|
lwz W(s),(s)*4(%r4)
|
|
|
|
/*
|
|
* Perform a step with F0, and load W(s). Uses W(s) as a temporary
|
|
* before loading it.
|
|
* This is actually 10 instructions, which is an awkward fit.
|
|
* It can execute grouped as listed, or delayed one instruction.
|
|
* (If delayed two instructions, there is a stall before the start of the
|
|
* second line.) Thus, two iterations take 7 cycles, 3.5 cycles per round.
|
|
*/
|
|
#define STEPD0_LOAD(t,s) \
|
|
add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); and W(s),RC(t),RB(t); \
|
|
add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi RB(t),RB(t),30; \
|
|
add RE(t),RE(t),W(s); add %r0,%r0,%r5; lwz W(s),(s)*4(%r4); \
|
|
add RE(t),RE(t),%r0
|
|
|
|
/*
|
|
* This is likewise awkward, 13 instructions. However, it can also
|
|
* execute starting with 2 out of 3 possible moduli, so it does 2 rounds
|
|
* in 9 cycles, 4.5 cycles/round.
|
|
*/
|
|
#define STEPD0_UPDATE(t,s,loadk...) \
|
|
add RE(t),RE(t),W(t); andc %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \
|
|
add RE(t),RE(t),%r0; and %r0,RC(t),RB(t); xor W(s),W(s),W((s)-8); \
|
|
add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \
|
|
add RE(t),RE(t),%r5; loadk; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1; \
|
|
add RE(t),RE(t),%r0
|
|
|
|
/* Nicely optimal. Conveniently, also the most common. */
|
|
#define STEPD1_UPDATE(t,s,loadk...) \
|
|
add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \
|
|
add RE(t),RE(t),%r5; loadk; xor %r0,%r0,RC(t); xor W(s),W(s),W((s)-8); \
|
|
add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; xor W(s),W(s),W((s)-14); \
|
|
add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30; rotlwi W(s),W(s),1
|
|
|
|
/*
|
|
* The naked version, no UPDATE, for the last 4 rounds. 3 cycles per.
|
|
* We could use W(s) as a temp register, but we don't need it.
|
|
*/
|
|
#define STEPD1(t) \
|
|
add RE(t),RE(t),W(t); xor %r0,RD(t),RB(t); \
|
|
rotlwi RB(t),RB(t),30; add RE(t),RE(t),%r5; xor %r0,%r0,RC(t); \
|
|
add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; /* spare slot */ \
|
|
add RE(t),RE(t),%r0
|
|
|
|
/*
|
|
* 14 instructions, 5 cycles per. The majority function is a bit
|
|
* awkward to compute. This can execute with a 1-instruction delay,
|
|
* but it causes a 2-instruction delay, which triggers a stall.
|
|
*/
|
|
#define STEPD2_UPDATE(t,s,loadk...) \
|
|
add RE(t),RE(t),W(t); and %r0,RD(t),RB(t); xor W(s),W((s)-16),W((s)-3); \
|
|
add RE(t),RE(t),%r0; xor %r0,RD(t),RB(t); xor W(s),W(s),W((s)-8); \
|
|
add RE(t),RE(t),%r5; loadk; and %r0,%r0,RC(t); xor W(s),W(s),W((s)-14); \
|
|
add RE(t),RE(t),%r0; rotlwi %r0,RA(t),5; rotlwi W(s),W(s),1; \
|
|
add RE(t),RE(t),%r0; rotlwi RB(t),RB(t),30
|
|
|
|
#define STEP0_LOAD4(t,s) \
|
|
STEPD0_LOAD(t,s); \
|
|
STEPD0_LOAD((t+1),(s)+1); \
|
|
STEPD0_LOAD((t)+2,(s)+2); \
|
|
STEPD0_LOAD((t)+3,(s)+3)
|
|
|
|
#define STEPUP4(fn, t, s, loadk...) \
|
|
STEP##fn##_UPDATE(t,s,); \
|
|
STEP##fn##_UPDATE((t)+1,(s)+1,); \
|
|
STEP##fn##_UPDATE((t)+2,(s)+2,); \
|
|
STEP##fn##_UPDATE((t)+3,(s)+3,loadk)
|
|
|
|
#define STEPUP20(fn, t, s, loadk...) \
|
|
STEPUP4(fn, t, s,); \
|
|
STEPUP4(fn, (t)+4, (s)+4,); \
|
|
STEPUP4(fn, (t)+8, (s)+8,); \
|
|
STEPUP4(fn, (t)+12, (s)+12,); \
|
|
STEPUP4(fn, (t)+16, (s)+16, loadk)
|
|
|
|
.globl sha1_core
|
|
sha1_core:
|
|
stwu %r1,-80(%r1)
|
|
stmw %r13,4(%r1)
|
|
|
|
/* Load up A - E */
|
|
lmw %r27,0(%r3)
|
|
|
|
mtctr %r5
|
|
|
|
1:
|
|
LOADW(0)
|
|
lis %r5,0x5a82
|
|
mr RE(0),%r31
|
|
LOADW(1)
|
|
mr RD(0),%r30
|
|
mr RC(0),%r29
|
|
LOADW(2)
|
|
ori %r5,%r5,0x7999 /* K0-19 */
|
|
mr RB(0),%r28
|
|
LOADW(3)
|
|
mr RA(0),%r27
|
|
|
|
STEP0_LOAD4(0, 4)
|
|
STEP0_LOAD4(4, 8)
|
|
STEP0_LOAD4(8, 12)
|
|
STEPUP4(D0, 12, 16,)
|
|
STEPUP4(D0, 16, 20, lis %r5,0x6ed9)
|
|
|
|
ori %r5,%r5,0xeba1 /* K20-39 */
|
|
STEPUP20(D1, 20, 24, lis %r5,0x8f1b)
|
|
|
|
ori %r5,%r5,0xbcdc /* K40-59 */
|
|
STEPUP20(D2, 40, 44, lis %r5,0xca62)
|
|
|
|
ori %r5,%r5,0xc1d6 /* K60-79 */
|
|
STEPUP4(D1, 60, 64,)
|
|
STEPUP4(D1, 64, 68,)
|
|
STEPUP4(D1, 68, 72,)
|
|
STEPUP4(D1, 72, 76,)
|
|
addi %r4,%r4,64
|
|
STEPD1(76)
|
|
STEPD1(77)
|
|
STEPD1(78)
|
|
STEPD1(79)
|
|
|
|
/* Add results to original values */
|
|
add %r31,%r31,RE(0)
|
|
add %r30,%r30,RD(0)
|
|
add %r29,%r29,RC(0)
|
|
add %r28,%r28,RB(0)
|
|
add %r27,%r27,RA(0)
|
|
|
|
bdnz 1b
|
|
|
|
/* Save final hash, restore registers, and return */
|
|
stmw %r27,0(%r3)
|
|
lmw %r13,4(%r1)
|
|
addi %r1,%r1,80
|
|
blr
|