git-commit-vandalism/merge-ort.c
Elijah Newren 557ac0350d merge-ort: begin performance work; instrument with trace2_region_* calls
Add some timing instrumentation for both merge-ort and diffcore-rename;
I used these to measure and optimize performance in both, and several
future patch series will build on these to reduce the timings of some
select testcases.

=== Setup ===

The primary testcase I used involved rebasing a random topic in the
linux kernel (consisting of 35 patches) against an older version.  I
added two variants, one where I rename a toplevel directory, and another
where I only rebase one patch instead of the whole topic.  The setup is
as follows:

  $ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
  $ git branch hwmon-updates fd8bdb23b91876ac1e624337bb88dc1dcc21d67e
  $ git branch hwmon-just-one fd8bdb23b91876ac1e624337bb88dc1dcc21d67e~34
  $ git branch base 4703d9119972bf586d2cca76ec6438f819ffa30e
  $ git switch -c 5.4-renames v5.4
  $ git mv drivers pilots  # Introduce over 26,000 renames
  $ git commit -m "Rename drivers/ to pilots/"
  $ git config merge.renameLimit 30000
  $ git config merge.directoryRenames true

=== Testcases ===

Now with REBASE standing for either "git rebase [--merge]" (using
merge-recursive) or "test-tool fast-rebase" (using merge-ort), the
testcases are:

Testcase #1: no-renames

  $ git checkout v5.4^0
  $ REBASE --onto HEAD base hwmon-updates

  Note: technically the name is misleading; there are some renames, but
  very few.  Rename detection only takes about half the overall time.

Testcase #2: mega-renames

  $ git checkout 5.4-renames^0
  $ REBASE --onto HEAD base hwmon-updates

Testcase #3: just-one-mega

  $ git checkout 5.4-renames^0
  $ REBASE --onto HEAD base hwmon-just-one

=== Timing results ===

Overall timings, using hyperfine (1 warmup run, 3 runs for mega-renames,
10 runs for the other two cases):

                       merge-recursive           merge-ort
    no-renames:       18.912 s ±  0.174 s    14.263 s ±  0.053 s
    mega-renames:   5964.031 s ± 10.459 s  5504.231 s ±  5.150 s
    just-one-mega:   149.583 s ±  0.751 s   158.534 s ±  0.498 s

A single re-run of each with some breakdowns:

                                    ---  no-renames  ---
                              merge-recursive   merge-ort
    overall runtime:              19.302 s        14.257 s
    inexact rename detection:      7.603 s         7.906 s
    everything else:              11.699 s         6.351 s

                                    --- mega-renames ---
                              merge-recursive   merge-ort
    overall runtime:            5950.195 s      5499.672 s
    inexact rename detection:   5746.309 s      5487.120 s
    everything else:             203.886 s        17.552 s

                                    --- just-one-mega ---
                              merge-recursive   merge-ort
    overall runtime:             151.001 s       158.582 s
    inexact rename detection:    143.448 s       157.835 s
    everything else:               7.553 s         0.747 s

=== Timing observations ===

0) Maximum speedup

The "everything else" row represents the maximum speedup we could
achieve if we were to somehow infinitely parallelize inexact rename
detection, but leave everything else alone.  The fact that this is so
much smaller than the real runtime (even in the case with virtually no
renames) makes it clear just how overwhelmingly large the time spent on
rename detection can be.

1) no-renames

1a) merge-ort is faster than merge-recursive, which is nice.  However,
this still should not be considered good enough.  Although the "merge"
backend to rebase (merge-recursive) is sometimes faster than the "apply"
backend, this is one of those cases where it is not.  In fact, even
merge-ort is slower.  The "apply" backend can complete this testcase in
    6.940 s ± 0.485 s
which is about 2x faster than merge-ort and 3x faster than
merge-recursive.  One goal of the merge-ort performance work will be to
make it faster than git-am on this (and similar) testcases.

2) mega-renames

2a) Obviously rename detection is a huge cost; it's where most the time
is spent.  We need to cut that down.  If we could somehow infinitely
parallelize it and drive its time to 0, the merge-recursive time would
drop to about 204s, and the merge-ort time would drop to about 17s.  I
think this particular stat shows I've subtly baked a couple performance
improvements into merge-ort and into fast-rebase already.

3) just-one-mega

3a) not much to say here, it just gives some flavor for how rebasing
only one patch compares to rebasing 35.

=== Goals ===

This patch is obviously just the beginning.  Here are some of my goals
that this measurement will help us achieve:

* Drive the cost of rename detection down considerably for merges
* After the above has been achieved, see if there are other slowness
  factors (which would have previously been overshadowed by rename
  detection costs) which we can then focus on and also optimize.
* Ensure our rebase testcase that requires little rename detection
  is noticeably faster with merge-ort than with apply-based rebase.

Signed-off-by: Elijah Newren <newren@gmail.com>
Acked-by: Taylor Blau <ttaylorr@github.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-23 23:30:06 -08:00

3500 lines
110 KiB
C

/*
* "Ostensibly Recursive's Twin" merge strategy, or "ort" for short. Meant
* as a drop-in replacement for the "recursive" merge strategy, allowing one
* to replace
*
* git merge [-s recursive]
*
* with
*
* git merge -s ort
*
* Note: git's parser allows the space between '-s' and its argument to be
* missing. (Should I have backronymed "ham", "alsa", "kip", "nap, "alvo",
* "cale", "peedy", or "ins" instead of "ort"?)
*/
#include "cache.h"
#include "merge-ort.h"
#include "alloc.h"
#include "blob.h"
#include "cache-tree.h"
#include "commit.h"
#include "commit-reach.h"
#include "diff.h"
#include "diffcore.h"
#include "dir.h"
#include "ll-merge.h"
#include "object-store.h"
#include "revision.h"
#include "strmap.h"
#include "submodule.h"
#include "tree.h"
#include "unpack-trees.h"
#include "xdiff-interface.h"
/*
* We have many arrays of size 3. Whenever we have such an array, the
* indices refer to one of the sides of the three-way merge. This is so
* pervasive that the constants 0, 1, and 2 are used in many places in the
* code (especially in arithmetic operations to find the other side's index
* or to compute a relevant mask), but sometimes these enum names are used
* to aid code clarity.
*
* See also 'filemask' and 'dirmask' in struct conflict_info; the "ith side"
* referred to there is one of these three sides.
*/
enum merge_side {
MERGE_BASE = 0,
MERGE_SIDE1 = 1,
MERGE_SIDE2 = 2
};
struct rename_info {
/*
* All variables that are arrays of size 3 correspond to data tracked
* for the sides in enum merge_side. Index 0 is almost always unused
* because we often only need to track information for MERGE_SIDE1 and
* MERGE_SIDE2 (MERGE_BASE can't have rename information since renames
* are determined relative to what changed since the MERGE_BASE).
*/
/*
* pairs: pairing of filenames from diffcore_rename()
*/
struct diff_queue_struct pairs[3];
/*
* dirs_removed: directories removed on a given side of history.
*/
struct strset dirs_removed[3];
/*
* dir_rename_count: tracking where parts of a directory were renamed to
*
* When files in a directory are renamed, they may not all go to the
* same location. Each strmap here tracks:
* old_dir => {new_dir => int}
* That is, dir_rename_count[side] is a strmap to a strintmap.
*/
struct strmap dir_rename_count[3];
/*
* dir_renames: computed directory renames
*
* This is a map of old_dir => new_dir and is derived in part from
* dir_rename_count.
*/
struct strmap dir_renames[3];
/*
* needed_limit: value needed for inexact rename detection to run
*
* If the current rename limit wasn't high enough for inexact
* rename detection to run, this records the limit needed. Otherwise,
* this value remains 0.
*/
int needed_limit;
};
struct merge_options_internal {
/*
* paths: primary data structure in all of merge ort.
*
* The keys of paths:
* * are full relative paths from the toplevel of the repository
* (e.g. "drivers/firmware/raspberrypi.c").
* * store all relevant paths in the repo, both directories and
* files (e.g. drivers, drivers/firmware would also be included)
* * these keys serve to intern all the path strings, which allows
* us to do pointer comparison on directory names instead of
* strcmp; we just have to be careful to use the interned strings.
* (Technically paths_to_free may track some strings that were
* removed from froms paths.)
*
* The values of paths:
* * either a pointer to a merged_info, or a conflict_info struct
* * merged_info contains all relevant information for a
* non-conflicted entry.
* * conflict_info contains a merged_info, plus any additional
* information about a conflict such as the higher orders stages
* involved and the names of the paths those came from (handy
* once renames get involved).
* * a path may start "conflicted" (i.e. point to a conflict_info)
* and then a later step (e.g. three-way content merge) determines
* it can be cleanly merged, at which point it'll be marked clean
* and the algorithm will ignore any data outside the contained
* merged_info for that entry
* * If an entry remains conflicted, the merged_info portion of a
* conflict_info will later be filled with whatever version of
* the file should be placed in the working directory (e.g. an
* as-merged-as-possible variation that contains conflict markers).
*/
struct strmap paths;
/*
* conflicted: a subset of keys->values from "paths"
*
* conflicted is basically an optimization between process_entries()
* and record_conflicted_index_entries(); the latter could loop over
* ALL the entries in paths AGAIN and look for the ones that are
* still conflicted, but since process_entries() has to loop over
* all of them, it saves the ones it couldn't resolve in this strmap
* so that record_conflicted_index_entries() can iterate just the
* relevant entries.
*/
struct strmap conflicted;
/*
* paths_to_free: additional list of strings to free
*
* If keys are removed from "paths", they are added to paths_to_free
* to ensure they are later freed. We avoid free'ing immediately since
* other places (e.g. conflict_info.pathnames[]) may still be
* referencing these paths.
*/
struct string_list paths_to_free;
/*
* output: special messages and conflict notices for various paths
*
* This is a map of pathnames (a subset of the keys in "paths" above)
* to strbufs. It gathers various warning/conflict/notice messages
* for later processing.
*/
struct strmap output;
/*
* renames: various data relating to rename detection
*/
struct rename_info renames;
/*
* current_dir_name, toplevel_dir: temporary vars
*
* These are used in collect_merge_info_callback(), and will set the
* various merged_info.directory_name for the various paths we get;
* see documentation for that variable and the requirements placed on
* that field.
*/
const char *current_dir_name;
const char *toplevel_dir;
/* call_depth: recursion level counter for merging merge bases */
int call_depth;
};
struct version_info {
struct object_id oid;
unsigned short mode;
};
struct merged_info {
/* if is_null, ignore result. otherwise result has oid & mode */
struct version_info result;
unsigned is_null:1;
/*
* clean: whether the path in question is cleanly merged.
*
* see conflict_info.merged for more details.
*/
unsigned clean:1;
/*
* basename_offset: offset of basename of path.
*
* perf optimization to avoid recomputing offset of final '/'
* character in pathname (0 if no '/' in pathname).
*/
size_t basename_offset;
/*
* directory_name: containing directory name.
*
* Note that we assume directory_name is constructed such that
* strcmp(dir1_name, dir2_name) == 0 iff dir1_name == dir2_name,
* i.e. string equality is equivalent to pointer equality. For this
* to hold, we have to be careful setting directory_name.
*/
const char *directory_name;
};
struct conflict_info {
/*
* merged: the version of the path that will be written to working tree
*
* WARNING: It is critical to check merged.clean and ensure it is 0
* before reading any conflict_info fields outside of merged.
* Allocated merge_info structs will always have clean set to 1.
* Allocated conflict_info structs will have merged.clean set to 0
* initially. The merged.clean field is how we know if it is safe
* to access other parts of conflict_info besides merged; if a
* conflict_info's merged.clean is changed to 1, the rest of the
* algorithm is not allowed to look at anything outside of the
* merged member anymore.
*/
struct merged_info merged;
/* oids & modes from each of the three trees for this path */
struct version_info stages[3];
/* pathnames for each stage; may differ due to rename detection */
const char *pathnames[3];
/* Whether this path is/was involved in a directory/file conflict */
unsigned df_conflict:1;
/*
* Whether this path is/was involved in a non-content conflict other
* than a directory/file conflict (e.g. rename/rename, rename/delete,
* file location based on possible directory rename).
*/
unsigned path_conflict:1;
/*
* For filemask and dirmask, the ith bit corresponds to whether the
* ith entry is a file (filemask) or a directory (dirmask). Thus,
* filemask & dirmask is always zero, and filemask | dirmask is at
* most 7 but can be less when a path does not appear as either a
* file or a directory on at least one side of history.
*
* Note that these masks are related to enum merge_side, as the ith
* entry corresponds to side i.
*
* These values come from a traverse_trees() call; more info may be
* found looking at tree-walk.h's struct traverse_info,
* particularly the documentation above the "fn" member (note that
* filemask = mask & ~dirmask from that documentation).
*/
unsigned filemask:3;
unsigned dirmask:3;
/*
* Optimization to track which stages match, to avoid the need to
* recompute it in multiple steps. Either 0 or at least 2 bits are
* set; if at least 2 bits are set, their corresponding stages match.
*/
unsigned match_mask:3;
};
/*** Function Grouping: various utility functions ***/
/*
* For the next three macros, see warning for conflict_info.merged.
*
* In each of the below, mi is a struct merged_info*, and ci was defined
* as a struct conflict_info* (but we need to verify ci isn't actually
* pointed at a struct merged_info*).
*
* INITIALIZE_CI: Assign ci to mi but only if it's safe; set to NULL otherwise.
* VERIFY_CI: Ensure that something we assigned to a conflict_info* is one.
* ASSIGN_AND_VERIFY_CI: Similar to VERIFY_CI but do assignment first.
*/
#define INITIALIZE_CI(ci, mi) do { \
(ci) = (!(mi) || (mi)->clean) ? NULL : (struct conflict_info *)(mi); \
} while (0)
#define VERIFY_CI(ci) assert(ci && !ci->merged.clean);
#define ASSIGN_AND_VERIFY_CI(ci, mi) do { \
(ci) = (struct conflict_info *)(mi); \
assert((ci) && !(mi)->clean); \
} while (0)
static void free_strmap_strings(struct strmap *map)
{
struct hashmap_iter iter;
struct strmap_entry *entry;
strmap_for_each_entry(map, &iter, entry) {
free((char*)entry->key);
}
}
static void clear_or_reinit_internal_opts(struct merge_options_internal *opti,
int reinitialize)
{
struct rename_info *renames = &opti->renames;
int i;
void (*strmap_func)(struct strmap *, int) =
reinitialize ? strmap_partial_clear : strmap_clear;
void (*strset_func)(struct strset *) =
reinitialize ? strset_partial_clear : strset_clear;
/*
* We marked opti->paths with strdup_strings = 0, so that we
* wouldn't have to make another copy of the fullpath created by
* make_traverse_path from setup_path_info(). But, now that we've
* used it and have no other references to these strings, it is time
* to deallocate them.
*/
free_strmap_strings(&opti->paths);
strmap_func(&opti->paths, 1);
/*
* All keys and values in opti->conflicted are a subset of those in
* opti->paths. We don't want to deallocate anything twice, so we
* don't free the keys and we pass 0 for free_values.
*/
strmap_func(&opti->conflicted, 0);
/*
* opti->paths_to_free is similar to opti->paths; we created it with
* strdup_strings = 0 to avoid making _another_ copy of the fullpath
* but now that we've used it and have no other references to these
* strings, it is time to deallocate them. We do so by temporarily
* setting strdup_strings to 1.
*/
opti->paths_to_free.strdup_strings = 1;
string_list_clear(&opti->paths_to_free, 0);
opti->paths_to_free.strdup_strings = 0;
/* Free memory used by various renames maps */
for (i = MERGE_SIDE1; i <= MERGE_SIDE2; ++i) {
struct hashmap_iter iter;
struct strmap_entry *entry;
strset_func(&renames->dirs_removed[i]);
strmap_for_each_entry(&renames->dir_rename_count[i],
&iter, entry) {
struct strintmap *counts = entry->value;
strintmap_clear(counts);
}
strmap_func(&renames->dir_rename_count[i], 1);
strmap_func(&renames->dir_renames[i], 0);
}
if (!reinitialize) {
struct hashmap_iter iter;
struct strmap_entry *e;
/* Release and free each strbuf found in output */
strmap_for_each_entry(&opti->output, &iter, e) {
struct strbuf *sb = e->value;
strbuf_release(sb);
/*
* While strictly speaking we don't need to free(sb)
* here because we could pass free_values=1 when
* calling strmap_clear() on opti->output, that would
* require strmap_clear to do another
* strmap_for_each_entry() loop, so we just free it
* while we're iterating anyway.
*/
free(sb);
}
strmap_clear(&opti->output, 0);
}
}
static int err(struct merge_options *opt, const char *err, ...)
{
va_list params;
struct strbuf sb = STRBUF_INIT;
strbuf_addstr(&sb, "error: ");
va_start(params, err);
strbuf_vaddf(&sb, err, params);
va_end(params);
error("%s", sb.buf);
strbuf_release(&sb);
return -1;
}
static void format_commit(struct strbuf *sb,
int indent,
struct commit *commit)
{
struct merge_remote_desc *desc;
struct pretty_print_context ctx = {0};
ctx.abbrev = DEFAULT_ABBREV;
strbuf_addchars(sb, ' ', indent);
desc = merge_remote_util(commit);
if (desc) {
strbuf_addf(sb, "virtual %s\n", desc->name);
return;
}
format_commit_message(commit, "%h %s", sb, &ctx);
strbuf_addch(sb, '\n');
}
__attribute__((format (printf, 4, 5)))
static void path_msg(struct merge_options *opt,
const char *path,
int omittable_hint, /* skippable under --remerge-diff */
const char *fmt, ...)
{
va_list ap;
struct strbuf *sb = strmap_get(&opt->priv->output, path);
if (!sb) {
sb = xmalloc(sizeof(*sb));
strbuf_init(sb, 0);
strmap_put(&opt->priv->output, path, sb);
}
va_start(ap, fmt);
strbuf_vaddf(sb, fmt, ap);
va_end(ap);
strbuf_addch(sb, '\n');
}
/* add a string to a strbuf, but converting "/" to "_" */
static void add_flattened_path(struct strbuf *out, const char *s)
{
size_t i = out->len;
strbuf_addstr(out, s);
for (; i < out->len; i++)
if (out->buf[i] == '/')
out->buf[i] = '_';
}
static char *unique_path(struct strmap *existing_paths,
const char *path,
const char *branch)
{
struct strbuf newpath = STRBUF_INIT;
int suffix = 0;
size_t base_len;
strbuf_addf(&newpath, "%s~", path);
add_flattened_path(&newpath, branch);
base_len = newpath.len;
while (strmap_contains(existing_paths, newpath.buf)) {
strbuf_setlen(&newpath, base_len);
strbuf_addf(&newpath, "_%d", suffix++);
}
return strbuf_detach(&newpath, NULL);
}
/*** Function Grouping: functions related to collect_merge_info() ***/
static void setup_path_info(struct merge_options *opt,
struct string_list_item *result,
const char *current_dir_name,
int current_dir_name_len,
char *fullpath, /* we'll take over ownership */
struct name_entry *names,
struct name_entry *merged_version,
unsigned is_null, /* boolean */
unsigned df_conflict, /* boolean */
unsigned filemask,
unsigned dirmask,
int resolved /* boolean */)
{
/* result->util is void*, so mi is a convenience typed variable */
struct merged_info *mi;
assert(!is_null || resolved);
assert(!df_conflict || !resolved); /* df_conflict implies !resolved */
assert(resolved == (merged_version != NULL));
mi = xcalloc(1, resolved ? sizeof(struct merged_info) :
sizeof(struct conflict_info));
mi->directory_name = current_dir_name;
mi->basename_offset = current_dir_name_len;
mi->clean = !!resolved;
if (resolved) {
mi->result.mode = merged_version->mode;
oidcpy(&mi->result.oid, &merged_version->oid);
mi->is_null = !!is_null;
} else {
int i;
struct conflict_info *ci;
ASSIGN_AND_VERIFY_CI(ci, mi);
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
ci->pathnames[i] = fullpath;
ci->stages[i].mode = names[i].mode;
oidcpy(&ci->stages[i].oid, &names[i].oid);
}
ci->filemask = filemask;
ci->dirmask = dirmask;
ci->df_conflict = !!df_conflict;
if (dirmask)
/*
* Assume is_null for now, but if we have entries
* under the directory then when it is complete in
* write_completed_directory() it'll update this.
* Also, for D/F conflicts, we have to handle the
* directory first, then clear this bit and process
* the file to see how it is handled -- that occurs
* near the top of process_entry().
*/
mi->is_null = 1;
}
strmap_put(&opt->priv->paths, fullpath, mi);
result->string = fullpath;
result->util = mi;
}
static void collect_rename_info(struct merge_options *opt,
struct name_entry *names,
const char *dirname,
const char *fullname,
unsigned filemask,
unsigned dirmask,
unsigned match_mask)
{
struct rename_info *renames = &opt->priv->renames;
/* Update dirs_removed, as needed */
if (dirmask == 1 || dirmask == 3 || dirmask == 5) {
/* absent_mask = 0x07 - dirmask; sides = absent_mask/2 */
unsigned sides = (0x07 - dirmask)/2;
if (sides & 1)
strset_add(&renames->dirs_removed[1], fullname);
if (sides & 2)
strset_add(&renames->dirs_removed[2], fullname);
}
}
static int collect_merge_info_callback(int n,
unsigned long mask,
unsigned long dirmask,
struct name_entry *names,
struct traverse_info *info)
{
/*
* n is 3. Always.
* common ancestor (mbase) has mask 1, and stored in index 0 of names
* head of side 1 (side1) has mask 2, and stored in index 1 of names
* head of side 2 (side2) has mask 4, and stored in index 2 of names
*/
struct merge_options *opt = info->data;
struct merge_options_internal *opti = opt->priv;
struct string_list_item pi; /* Path Info */
struct conflict_info *ci; /* typed alias to pi.util (which is void*) */
struct name_entry *p;
size_t len;
char *fullpath;
const char *dirname = opti->current_dir_name;
unsigned filemask = mask & ~dirmask;
unsigned match_mask = 0; /* will be updated below */
unsigned mbase_null = !(mask & 1);
unsigned side1_null = !(mask & 2);
unsigned side2_null = !(mask & 4);
unsigned side1_matches_mbase = (!side1_null && !mbase_null &&
names[0].mode == names[1].mode &&
oideq(&names[0].oid, &names[1].oid));
unsigned side2_matches_mbase = (!side2_null && !mbase_null &&
names[0].mode == names[2].mode &&
oideq(&names[0].oid, &names[2].oid));
unsigned sides_match = (!side1_null && !side2_null &&
names[1].mode == names[2].mode &&
oideq(&names[1].oid, &names[2].oid));
/*
* Note: When a path is a file on one side of history and a directory
* in another, we have a directory/file conflict. In such cases, if
* the conflict doesn't resolve from renames and deletions, then we
* always leave directories where they are and move files out of the
* way. Thus, while struct conflict_info has a df_conflict field to
* track such conflicts, we ignore that field for any directories at
* a path and only pay attention to it for files at the given path.
* The fact that we leave directories were they are also means that
* we do not need to worry about getting additional df_conflict
* information propagated from parent directories down to children
* (unlike, say traverse_trees_recursive() in unpack-trees.c, which
* sets a newinfo.df_conflicts field specifically to propagate it).
*/
unsigned df_conflict = (filemask != 0) && (dirmask != 0);
/* n = 3 is a fundamental assumption. */
if (n != 3)
BUG("Called collect_merge_info_callback wrong");
/*
* A bunch of sanity checks verifying that traverse_trees() calls
* us the way I expect. Could just remove these at some point,
* though maybe they are helpful to future code readers.
*/
assert(mbase_null == is_null_oid(&names[0].oid));
assert(side1_null == is_null_oid(&names[1].oid));
assert(side2_null == is_null_oid(&names[2].oid));
assert(!mbase_null || !side1_null || !side2_null);
assert(mask > 0 && mask < 8);
/* Determine match_mask */
if (side1_matches_mbase)
match_mask = (side2_matches_mbase ? 7 : 3);
else if (side2_matches_mbase)
match_mask = 5;
else if (sides_match)
match_mask = 6;
/*
* Get the name of the relevant filepath, which we'll pass to
* setup_path_info() for tracking.
*/
p = names;
while (!p->mode)
p++;
len = traverse_path_len(info, p->pathlen);
/* +1 in both of the following lines to include the NUL byte */
fullpath = xmalloc(len + 1);
make_traverse_path(fullpath, len + 1, info, p->path, p->pathlen);
/*
* If mbase, side1, and side2 all match, we can resolve early. Even
* if these are trees, there will be no renames or anything
* underneath.
*/
if (side1_matches_mbase && side2_matches_mbase) {
/* mbase, side1, & side2 all match; use mbase as resolution */
setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
names, names+0, mbase_null, 0,
filemask, dirmask, 1);
return mask;
}
/*
* Gather additional information used in rename detection.
*/
collect_rename_info(opt, names, dirname, fullpath,
filemask, dirmask, match_mask);
/*
* Record information about the path so we can resolve later in
* process_entries.
*/
setup_path_info(opt, &pi, dirname, info->pathlen, fullpath,
names, NULL, 0, df_conflict, filemask, dirmask, 0);
ci = pi.util;
VERIFY_CI(ci);
ci->match_mask = match_mask;
/* If dirmask, recurse into subdirectories */
if (dirmask) {
struct traverse_info newinfo;
struct tree_desc t[3];
void *buf[3] = {NULL, NULL, NULL};
const char *original_dir_name;
int i, ret;
ci->match_mask &= filemask;
newinfo = *info;
newinfo.prev = info;
newinfo.name = p->path;
newinfo.namelen = p->pathlen;
newinfo.pathlen = st_add3(newinfo.pathlen, p->pathlen, 1);
/*
* If this directory we are about to recurse into cared about
* its parent directory (the current directory) having a D/F
* conflict, then we'd propagate the masks in this way:
* newinfo.df_conflicts |= (mask & ~dirmask);
* But we don't worry about propagating D/F conflicts. (See
* comment near setting of local df_conflict variable near
* the beginning of this function).
*/
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
if (i == 1 && side1_matches_mbase)
t[1] = t[0];
else if (i == 2 && side2_matches_mbase)
t[2] = t[0];
else if (i == 2 && sides_match)
t[2] = t[1];
else {
const struct object_id *oid = NULL;
if (dirmask & 1)
oid = &names[i].oid;
buf[i] = fill_tree_descriptor(opt->repo,
t + i, oid);
}
dirmask >>= 1;
}
original_dir_name = opti->current_dir_name;
opti->current_dir_name = pi.string;
ret = traverse_trees(NULL, 3, t, &newinfo);
opti->current_dir_name = original_dir_name;
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++)
free(buf[i]);
if (ret < 0)
return -1;
}
return mask;
}
static int collect_merge_info(struct merge_options *opt,
struct tree *merge_base,
struct tree *side1,
struct tree *side2)
{
int ret;
struct tree_desc t[3];
struct traverse_info info;
opt->priv->toplevel_dir = "";
opt->priv->current_dir_name = opt->priv->toplevel_dir;
setup_traverse_info(&info, opt->priv->toplevel_dir);
info.fn = collect_merge_info_callback;
info.data = opt;
info.show_all_errors = 1;
parse_tree(merge_base);
parse_tree(side1);
parse_tree(side2);
init_tree_desc(t + 0, merge_base->buffer, merge_base->size);
init_tree_desc(t + 1, side1->buffer, side1->size);
init_tree_desc(t + 2, side2->buffer, side2->size);
trace2_region_enter("merge", "traverse_trees", opt->repo);
ret = traverse_trees(NULL, 3, t, &info);
trace2_region_leave("merge", "traverse_trees", opt->repo);
return ret;
}
/*** Function Grouping: functions related to threeway content merges ***/
static int find_first_merges(struct repository *repo,
const char *path,
struct commit *a,
struct commit *b,
struct object_array *result)
{
int i, j;
struct object_array merges = OBJECT_ARRAY_INIT;
struct commit *commit;
int contains_another;
char merged_revision[GIT_MAX_HEXSZ + 2];
const char *rev_args[] = { "rev-list", "--merges", "--ancestry-path",
"--all", merged_revision, NULL };
struct rev_info revs;
struct setup_revision_opt rev_opts;
memset(result, 0, sizeof(struct object_array));
memset(&rev_opts, 0, sizeof(rev_opts));
/* get all revisions that merge commit a */
xsnprintf(merged_revision, sizeof(merged_revision), "^%s",
oid_to_hex(&a->object.oid));
repo_init_revisions(repo, &revs, NULL);
rev_opts.submodule = path;
/* FIXME: can't handle linked worktrees in submodules yet */
revs.single_worktree = path != NULL;
setup_revisions(ARRAY_SIZE(rev_args)-1, rev_args, &revs, &rev_opts);
/* save all revisions from the above list that contain b */
if (prepare_revision_walk(&revs))
die("revision walk setup failed");
while ((commit = get_revision(&revs)) != NULL) {
struct object *o = &(commit->object);
if (in_merge_bases(b, commit))
add_object_array(o, NULL, &merges);
}
reset_revision_walk();
/* Now we've got all merges that contain a and b. Prune all
* merges that contain another found merge and save them in
* result.
*/
for (i = 0; i < merges.nr; i++) {
struct commit *m1 = (struct commit *) merges.objects[i].item;
contains_another = 0;
for (j = 0; j < merges.nr; j++) {
struct commit *m2 = (struct commit *) merges.objects[j].item;
if (i != j && in_merge_bases(m2, m1)) {
contains_another = 1;
break;
}
}
if (!contains_another)
add_object_array(merges.objects[i].item, NULL, result);
}
object_array_clear(&merges);
return result->nr;
}
static int merge_submodule(struct merge_options *opt,
const char *path,
const struct object_id *o,
const struct object_id *a,
const struct object_id *b,
struct object_id *result)
{
struct commit *commit_o, *commit_a, *commit_b;
int parent_count;
struct object_array merges;
struct strbuf sb = STRBUF_INIT;
int i;
int search = !opt->priv->call_depth;
/* store fallback answer in result in case we fail */
oidcpy(result, opt->priv->call_depth ? o : a);
/* we can not handle deletion conflicts */
if (is_null_oid(o))
return 0;
if (is_null_oid(a))
return 0;
if (is_null_oid(b))
return 0;
if (add_submodule_odb(path)) {
path_msg(opt, path, 0,
_("Failed to merge submodule %s (not checked out)"),
path);
return 0;
}
if (!(commit_o = lookup_commit_reference(opt->repo, o)) ||
!(commit_a = lookup_commit_reference(opt->repo, a)) ||
!(commit_b = lookup_commit_reference(opt->repo, b))) {
path_msg(opt, path, 0,
_("Failed to merge submodule %s (commits not present)"),
path);
return 0;
}
/* check whether both changes are forward */
if (!in_merge_bases(commit_o, commit_a) ||
!in_merge_bases(commit_o, commit_b)) {
path_msg(opt, path, 0,
_("Failed to merge submodule %s "
"(commits don't follow merge-base)"),
path);
return 0;
}
/* Case #1: a is contained in b or vice versa */
if (in_merge_bases(commit_a, commit_b)) {
oidcpy(result, b);
path_msg(opt, path, 1,
_("Note: Fast-forwarding submodule %s to %s"),
path, oid_to_hex(b));
return 1;
}
if (in_merge_bases(commit_b, commit_a)) {
oidcpy(result, a);
path_msg(opt, path, 1,
_("Note: Fast-forwarding submodule %s to %s"),
path, oid_to_hex(a));
return 1;
}
/*
* Case #2: There are one or more merges that contain a and b in
* the submodule. If there is only one, then present it as a
* suggestion to the user, but leave it marked unmerged so the
* user needs to confirm the resolution.
*/
/* Skip the search if makes no sense to the calling context. */
if (!search)
return 0;
/* find commit which merges them */
parent_count = find_first_merges(opt->repo, path, commit_a, commit_b,
&merges);
switch (parent_count) {
case 0:
path_msg(opt, path, 0, _("Failed to merge submodule %s"), path);
break;
case 1:
format_commit(&sb, 4,
(struct commit *)merges.objects[0].item);
path_msg(opt, path, 0,
_("Failed to merge submodule %s, but a possible merge "
"resolution exists:\n%s\n"),
path, sb.buf);
path_msg(opt, path, 1,
_("If this is correct simply add it to the index "
"for example\n"
"by using:\n\n"
" git update-index --cacheinfo 160000 %s \"%s\"\n\n"
"which will accept this suggestion.\n"),
oid_to_hex(&merges.objects[0].item->oid), path);
strbuf_release(&sb);
break;
default:
for (i = 0; i < merges.nr; i++)
format_commit(&sb, 4,
(struct commit *)merges.objects[i].item);
path_msg(opt, path, 0,
_("Failed to merge submodule %s, but multiple "
"possible merges exist:\n%s"), path, sb.buf);
strbuf_release(&sb);
}
object_array_clear(&merges);
return 0;
}
static int merge_3way(struct merge_options *opt,
const char *path,
const struct object_id *o,
const struct object_id *a,
const struct object_id *b,
const char *pathnames[3],
const int extra_marker_size,
mmbuffer_t *result_buf)
{
mmfile_t orig, src1, src2;
struct ll_merge_options ll_opts = {0};
char *base, *name1, *name2;
int merge_status;
ll_opts.renormalize = opt->renormalize;
ll_opts.extra_marker_size = extra_marker_size;
ll_opts.xdl_opts = opt->xdl_opts;
if (opt->priv->call_depth) {
ll_opts.virtual_ancestor = 1;
ll_opts.variant = 0;
} else {
switch (opt->recursive_variant) {
case MERGE_VARIANT_OURS:
ll_opts.variant = XDL_MERGE_FAVOR_OURS;
break;
case MERGE_VARIANT_THEIRS:
ll_opts.variant = XDL_MERGE_FAVOR_THEIRS;
break;
default:
ll_opts.variant = 0;
break;
}
}
assert(pathnames[0] && pathnames[1] && pathnames[2] && opt->ancestor);
if (pathnames[0] == pathnames[1] && pathnames[1] == pathnames[2]) {
base = mkpathdup("%s", opt->ancestor);
name1 = mkpathdup("%s", opt->branch1);
name2 = mkpathdup("%s", opt->branch2);
} else {
base = mkpathdup("%s:%s", opt->ancestor, pathnames[0]);
name1 = mkpathdup("%s:%s", opt->branch1, pathnames[1]);
name2 = mkpathdup("%s:%s", opt->branch2, pathnames[2]);
}
read_mmblob(&orig, o);
read_mmblob(&src1, a);
read_mmblob(&src2, b);
merge_status = ll_merge(result_buf, path, &orig, base,
&src1, name1, &src2, name2,
opt->repo->index, &ll_opts);
free(base);
free(name1);
free(name2);
free(orig.ptr);
free(src1.ptr);
free(src2.ptr);
return merge_status;
}
static int handle_content_merge(struct merge_options *opt,
const char *path,
const struct version_info *o,
const struct version_info *a,
const struct version_info *b,
const char *pathnames[3],
const int extra_marker_size,
struct version_info *result)
{
/*
* path is the target location where we want to put the file, and
* is used to determine any normalization rules in ll_merge.
*
* The normal case is that path and all entries in pathnames are
* identical, though renames can affect which path we got one of
* the three blobs to merge on various sides of history.
*
* extra_marker_size is the amount to extend conflict markers in
* ll_merge; this is neeed if we have content merges of content
* merges, which happens for example with rename/rename(2to1) and
* rename/add conflicts.
*/
unsigned clean = 1;
/*
* handle_content_merge() needs both files to be of the same type, i.e.
* both files OR both submodules OR both symlinks. Conflicting types
* needs to be handled elsewhere.
*/
assert((S_IFMT & a->mode) == (S_IFMT & b->mode));
/* Merge modes */
if (a->mode == b->mode || a->mode == o->mode)
result->mode = b->mode;
else {
/* must be the 100644/100755 case */
assert(S_ISREG(a->mode));
result->mode = a->mode;
clean = (b->mode == o->mode);
/*
* FIXME: If opt->priv->call_depth && !clean, then we really
* should not make result->mode match either a->mode or
* b->mode; that causes t6036 "check conflicting mode for
* regular file" to fail. It would be best to use some other
* mode, but we'll confuse all kinds of stuff if we use one
* where S_ISREG(result->mode) isn't true, and if we use
* something like 0100666, then tree-walk.c's calls to
* canon_mode() will just normalize that to 100644 for us and
* thus not solve anything.
*
* Figure out if there's some kind of way we can work around
* this...
*/
}
/*
* Trivial oid merge.
*
* Note: While one might assume that the next four lines would
* be unnecessary due to the fact that match_mask is often
* setup and already handled, renames don't always take care
* of that.
*/
if (oideq(&a->oid, &b->oid) || oideq(&a->oid, &o->oid))
oidcpy(&result->oid, &b->oid);
else if (oideq(&b->oid, &o->oid))
oidcpy(&result->oid, &a->oid);
/* Remaining rules depend on file vs. submodule vs. symlink. */
else if (S_ISREG(a->mode)) {
mmbuffer_t result_buf;
int ret = 0, merge_status;
int two_way;
/*
* If 'o' is different type, treat it as null so we do a
* two-way merge.
*/
two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
merge_status = merge_3way(opt, path,
two_way ? &null_oid : &o->oid,
&a->oid, &b->oid,
pathnames, extra_marker_size,
&result_buf);
if ((merge_status < 0) || !result_buf.ptr)
ret = err(opt, _("Failed to execute internal merge"));
if (!ret &&
write_object_file(result_buf.ptr, result_buf.size,
blob_type, &result->oid))
ret = err(opt, _("Unable to add %s to database"),
path);
free(result_buf.ptr);
if (ret)
return -1;
clean &= (merge_status == 0);
path_msg(opt, path, 1, _("Auto-merging %s"), path);
} else if (S_ISGITLINK(a->mode)) {
int two_way = ((S_IFMT & o->mode) != (S_IFMT & a->mode));
clean = merge_submodule(opt, pathnames[0],
two_way ? &null_oid : &o->oid,
&a->oid, &b->oid, &result->oid);
if (opt->priv->call_depth && two_way && !clean) {
result->mode = o->mode;
oidcpy(&result->oid, &o->oid);
}
} else if (S_ISLNK(a->mode)) {
if (opt->priv->call_depth) {
clean = 0;
result->mode = o->mode;
oidcpy(&result->oid, &o->oid);
} else {
switch (opt->recursive_variant) {
case MERGE_VARIANT_NORMAL:
clean = 0;
oidcpy(&result->oid, &a->oid);
break;
case MERGE_VARIANT_OURS:
oidcpy(&result->oid, &a->oid);
break;
case MERGE_VARIANT_THEIRS:
oidcpy(&result->oid, &b->oid);
break;
}
}
} else
BUG("unsupported object type in the tree: %06o for %s",
a->mode, path);
return clean;
}
/*** Function Grouping: functions related to detect_and_process_renames(), ***
*** which are split into directory and regular rename detection sections. ***/
/*** Function Grouping: functions related to directory rename detection ***/
struct collision_info {
struct string_list source_files;
unsigned reported_already:1;
};
/*
* Return a new string that replaces the beginning portion (which matches
* rename_info->key), with rename_info->util.new_dir. In perl-speak:
* new_path_name = (old_path =~ s/rename_info->key/rename_info->value/);
* NOTE:
* Caller must ensure that old_path starts with rename_info->key + '/'.
*/
static char *apply_dir_rename(struct strmap_entry *rename_info,
const char *old_path)
{
struct strbuf new_path = STRBUF_INIT;
const char *old_dir = rename_info->key;
const char *new_dir = rename_info->value;
int oldlen, newlen, new_dir_len;
oldlen = strlen(old_dir);
if (*new_dir == '\0')
/*
* If someone renamed/merged a subdirectory into the root
* directory (e.g. 'some/subdir' -> ''), then we want to
* avoid returning
* '' + '/filename'
* as the rename; we need to make old_path + oldlen advance
* past the '/' character.
*/
oldlen++;
new_dir_len = strlen(new_dir);
newlen = new_dir_len + (strlen(old_path) - oldlen) + 1;
strbuf_grow(&new_path, newlen);
strbuf_add(&new_path, new_dir, new_dir_len);
strbuf_addstr(&new_path, &old_path[oldlen]);
return strbuf_detach(&new_path, NULL);
}
static int path_in_way(struct strmap *paths, const char *path, unsigned side_mask)
{
struct merged_info *mi = strmap_get(paths, path);
struct conflict_info *ci;
if (!mi)
return 0;
INITIALIZE_CI(ci, mi);
return mi->clean || (side_mask & (ci->filemask | ci->dirmask));
}
/*
* See if there is a directory rename for path, and if there are any file
* level conflicts on the given side for the renamed location. If there is
* a rename and there are no conflicts, return the new name. Otherwise,
* return NULL.
*/
static char *handle_path_level_conflicts(struct merge_options *opt,
const char *path,
unsigned side_index,
struct strmap_entry *rename_info,
struct strmap *collisions)
{
char *new_path = NULL;
struct collision_info *c_info;
int clean = 1;
struct strbuf collision_paths = STRBUF_INIT;
/*
* entry has the mapping of old directory name to new directory name
* that we want to apply to path.
*/
new_path = apply_dir_rename(rename_info, path);
if (!new_path)
BUG("Failed to apply directory rename!");
/*
* The caller needs to have ensured that it has pre-populated
* collisions with all paths that map to new_path. Do a quick check
* to ensure that's the case.
*/
c_info = strmap_get(collisions, new_path);
if (c_info == NULL)
BUG("c_info is NULL");
/*
* Check for one-sided add/add/.../add conflicts, i.e.
* where implicit renames from the other side doing
* directory rename(s) can affect this side of history
* to put multiple paths into the same location. Warn
* and bail on directory renames for such paths.
*/
if (c_info->reported_already) {
clean = 0;
} else if (path_in_way(&opt->priv->paths, new_path, 1 << side_index)) {
c_info->reported_already = 1;
strbuf_add_separated_string_list(&collision_paths, ", ",
&c_info->source_files);
path_msg(opt, new_path, 0,
_("CONFLICT (implicit dir rename): Existing file/dir "
"at %s in the way of implicit directory rename(s) "
"putting the following path(s) there: %s."),
new_path, collision_paths.buf);
clean = 0;
} else if (c_info->source_files.nr > 1) {
c_info->reported_already = 1;
strbuf_add_separated_string_list(&collision_paths, ", ",
&c_info->source_files);
path_msg(opt, new_path, 0,
_("CONFLICT (implicit dir rename): Cannot map more "
"than one path to %s; implicit directory renames "
"tried to put these paths there: %s"),
new_path, collision_paths.buf);
clean = 0;
}
/* Free memory we no longer need */
strbuf_release(&collision_paths);
if (!clean && new_path) {
free(new_path);
return NULL;
}
return new_path;
}
static void dirname_munge(char *filename)
{
char *slash = strrchr(filename, '/');
if (!slash)
slash = filename;
*slash = '\0';
}
static void increment_count(struct strmap *dir_rename_count,
char *old_dir,
char *new_dir)
{
struct strintmap *counts;
struct strmap_entry *e;
/* Get the {new_dirs -> counts} mapping using old_dir */
e = strmap_get_entry(dir_rename_count, old_dir);
if (e) {
counts = e->value;
} else {
counts = xmalloc(sizeof(*counts));
strintmap_init_with_options(counts, 0, NULL, 1);
strmap_put(dir_rename_count, old_dir, counts);
}
/* Increment the count for new_dir */
strintmap_incr(counts, new_dir, 1);
}
static void update_dir_rename_counts(struct strmap *dir_rename_count,
struct strset *dirs_removed,
const char *oldname,
const char *newname)
{
char *old_dir = xstrdup(oldname);
char *new_dir = xstrdup(newname);
char new_dir_first_char = new_dir[0];
int first_time_in_loop = 1;
while (1) {
dirname_munge(old_dir);
dirname_munge(new_dir);
/*
* When renaming
* "a/b/c/d/e/foo.c" -> "a/b/some/thing/else/e/foo.c"
* then this suggests that both
* a/b/c/d/e/ => a/b/some/thing/else/e/
* a/b/c/d/ => a/b/some/thing/else/
* so we want to increment counters for both. We do NOT,
* however, also want to suggest that there was the following
* rename:
* a/b/c/ => a/b/some/thing/
* so we need to quit at that point.
*
* Note the when first_time_in_loop, we only strip off the
* basename, and we don't care if that's different.
*/
if (!first_time_in_loop) {
char *old_sub_dir = strchr(old_dir, '\0')+1;
char *new_sub_dir = strchr(new_dir, '\0')+1;
if (!*new_dir) {
/*
* Special case when renaming to root directory,
* i.e. when new_dir == "". In this case, we had
* something like
* a/b/subdir => subdir
* and so dirname_munge() sets things up so that
* old_dir = "a/b\0subdir\0"
* new_dir = "\0ubdir\0"
* We didn't have a '/' to overwrite a '\0' onto
* in new_dir, so we have to compare differently.
*/
if (new_dir_first_char != old_sub_dir[0] ||
strcmp(old_sub_dir+1, new_sub_dir))
break;
} else {
if (strcmp(old_sub_dir, new_sub_dir))
break;
}
}
if (strset_contains(dirs_removed, old_dir))
increment_count(dir_rename_count, old_dir, new_dir);
else
break;
/* If we hit toplevel directory ("") for old or new dir, quit */
if (!*old_dir || !*new_dir)
break;
first_time_in_loop = 0;
}
/* Free resources we don't need anymore */
free(old_dir);
free(new_dir);
}
static void compute_rename_counts(struct diff_queue_struct *pairs,
struct strmap *dir_rename_count,
struct strset *dirs_removed)
{
int i;
for (i = 0; i < pairs->nr; ++i) {
struct diff_filepair *pair = pairs->queue[i];
/* File not part of directory rename if it wasn't renamed */
if (pair->status != 'R')
continue;
/*
* Make dir_rename_count contain a map of a map:
* old_directory -> {new_directory -> count}
* In other words, for every pair look at the directories for
* the old filename and the new filename and count how many
* times that pairing occurs.
*/
update_dir_rename_counts(dir_rename_count, dirs_removed,
pair->one->path,
pair->two->path);
}
}
static void get_provisional_directory_renames(struct merge_options *opt,
unsigned side,
int *clean)
{
struct hashmap_iter iter;
struct strmap_entry *entry;
struct rename_info *renames = &opt->priv->renames;
compute_rename_counts(&renames->pairs[side],
&renames->dir_rename_count[side],
&renames->dirs_removed[side]);
/*
* Collapse
* dir_rename_count: old_directory -> {new_directory -> count}
* down to
* dir_renames: old_directory -> best_new_directory
* where best_new_directory is the one with the unique highest count.
*/
strmap_for_each_entry(&renames->dir_rename_count[side], &iter, entry) {
const char *source_dir = entry->key;
struct strintmap *counts = entry->value;
struct hashmap_iter count_iter;
struct strmap_entry *count_entry;
int max = 0;
int bad_max = 0;
const char *best = NULL;
strintmap_for_each_entry(counts, &count_iter, count_entry) {
const char *target_dir = count_entry->key;
intptr_t count = (intptr_t)count_entry->value;
if (count == max)
bad_max = max;
else if (count > max) {
max = count;
best = target_dir;
}
}
if (bad_max == max) {
path_msg(opt, source_dir, 0,
_("CONFLICT (directory rename split): "
"Unclear where to rename %s to; it was "
"renamed to multiple other directories, with "
"no destination getting a majority of the "
"files."),
source_dir);
/*
* We should mark this as unclean IF something attempts
* to use this rename. We do not yet have the logic
* in place to detect if this directory rename is being
* used, and optimizations that reduce the number of
* renames cause this to falsely trigger. For now,
* just disable it, causing t6423 testcase 2a to break.
* We'll later fix the detection, and when we do we
* will re-enable setting *clean to 0 (and thereby fix
* t6423 testcase 2a).
*/
/* *clean = 0; */
} else {
strmap_put(&renames->dir_renames[side],
source_dir, (void*)best);
}
}
}
static void handle_directory_level_conflicts(struct merge_options *opt)
{
struct hashmap_iter iter;
struct strmap_entry *entry;
struct string_list duplicated = STRING_LIST_INIT_NODUP;
struct rename_info *renames = &opt->priv->renames;
struct strmap *side1_dir_renames = &renames->dir_renames[MERGE_SIDE1];
struct strmap *side2_dir_renames = &renames->dir_renames[MERGE_SIDE2];
int i;
strmap_for_each_entry(side1_dir_renames, &iter, entry) {
if (strmap_contains(side2_dir_renames, entry->key))
string_list_append(&duplicated, entry->key);
}
for (i = 0; i < duplicated.nr; i++) {
strmap_remove(side1_dir_renames, duplicated.items[i].string, 0);
strmap_remove(side2_dir_renames, duplicated.items[i].string, 0);
}
string_list_clear(&duplicated, 0);
}
static struct strmap_entry *check_dir_renamed(const char *path,
struct strmap *dir_renames)
{
char *temp = xstrdup(path);
char *end;
struct strmap_entry *e = NULL;
while ((end = strrchr(temp, '/'))) {
*end = '\0';
e = strmap_get_entry(dir_renames, temp);
if (e)
break;
}
free(temp);
return e;
}
static void compute_collisions(struct strmap *collisions,
struct strmap *dir_renames,
struct diff_queue_struct *pairs)
{
int i;
strmap_init_with_options(collisions, NULL, 0);
if (strmap_empty(dir_renames))
return;
/*
* Multiple files can be mapped to the same path due to directory
* renames done by the other side of history. Since that other
* side of history could have merged multiple directories into one,
* if our side of history added the same file basename to each of
* those directories, then all N of them would get implicitly
* renamed by the directory rename detection into the same path,
* and we'd get an add/add/.../add conflict, and all those adds
* from *this* side of history. This is not representable in the
* index, and users aren't going to easily be able to make sense of
* it. So we need to provide a good warning about what's
* happening, and fall back to no-directory-rename detection
* behavior for those paths.
*
* See testcases 9e and all of section 5 from t6043 for examples.
*/
for (i = 0; i < pairs->nr; ++i) {
struct strmap_entry *rename_info;
struct collision_info *collision_info;
char *new_path;
struct diff_filepair *pair = pairs->queue[i];
if (pair->status != 'A' && pair->status != 'R')
continue;
rename_info = check_dir_renamed(pair->two->path, dir_renames);
if (!rename_info)
continue;
new_path = apply_dir_rename(rename_info, pair->two->path);
assert(new_path);
collision_info = strmap_get(collisions, new_path);
if (collision_info) {
free(new_path);
} else {
collision_info = xcalloc(1,
sizeof(struct collision_info));
string_list_init(&collision_info->source_files, 0);
strmap_put(collisions, new_path, collision_info);
}
string_list_insert(&collision_info->source_files,
pair->two->path);
}
}
static char *check_for_directory_rename(struct merge_options *opt,
const char *path,
unsigned side_index,
struct strmap *dir_renames,
struct strmap *dir_rename_exclusions,
struct strmap *collisions,
int *clean_merge)
{
char *new_path = NULL;
struct strmap_entry *rename_info;
struct strmap_entry *otherinfo = NULL;
const char *new_dir;
if (strmap_empty(dir_renames))
return new_path;
rename_info = check_dir_renamed(path, dir_renames);
if (!rename_info)
return new_path;
/* old_dir = rename_info->key; */
new_dir = rename_info->value;
/*
* This next part is a little weird. We do not want to do an
* implicit rename into a directory we renamed on our side, because
* that will result in a spurious rename/rename(1to2) conflict. An
* example:
* Base commit: dumbdir/afile, otherdir/bfile
* Side 1: smrtdir/afile, otherdir/bfile
* Side 2: dumbdir/afile, dumbdir/bfile
* Here, while working on Side 1, we could notice that otherdir was
* renamed/merged to dumbdir, and change the diff_filepair for
* otherdir/bfile into a rename into dumbdir/bfile. However, Side
* 2 will notice the rename from dumbdir to smrtdir, and do the
* transitive rename to move it from dumbdir/bfile to
* smrtdir/bfile. That gives us bfile in dumbdir vs being in
* smrtdir, a rename/rename(1to2) conflict. We really just want
* the file to end up in smrtdir. And the way to achieve that is
* to not let Side1 do the rename to dumbdir, since we know that is
* the source of one of our directory renames.
*
* That's why otherinfo and dir_rename_exclusions is here.
*
* As it turns out, this also prevents N-way transient rename
* confusion; See testcases 9c and 9d of t6043.
*/
otherinfo = strmap_get_entry(dir_rename_exclusions, new_dir);
if (otherinfo) {
path_msg(opt, rename_info->key, 1,
_("WARNING: Avoiding applying %s -> %s rename "
"to %s, because %s itself was renamed."),
rename_info->key, new_dir, path, new_dir);
return NULL;
}
new_path = handle_path_level_conflicts(opt, path, side_index,
rename_info, collisions);
*clean_merge &= (new_path != NULL);
return new_path;
}
static void apply_directory_rename_modifications(struct merge_options *opt,
struct diff_filepair *pair,
char *new_path)
{
/*
* The basic idea is to get the conflict_info from opt->priv->paths
* at old path, and insert it into new_path; basically just this:
* ci = strmap_get(&opt->priv->paths, old_path);
* strmap_remove(&opt->priv->paths, old_path, 0);
* strmap_put(&opt->priv->paths, new_path, ci);
* However, there are some factors complicating this:
* - opt->priv->paths may already have an entry at new_path
* - Each ci tracks its containing directory, so we need to
* update that
* - If another ci has the same containing directory, then
* the two char*'s MUST point to the same location. See the
* comment in struct merged_info. strcmp equality is not
* enough; we need pointer equality.
* - opt->priv->paths must hold the parent directories of any
* entries that are added. So, if this directory rename
* causes entirely new directories, we must recursively add
* parent directories.
* - For each parent directory added to opt->priv->paths, we
* also need to get its parent directory stored in its
* conflict_info->merged.directory_name with all the same
* requirements about pointer equality.
*/
struct string_list dirs_to_insert = STRING_LIST_INIT_NODUP;
struct conflict_info *ci, *new_ci;
struct strmap_entry *entry;
const char *branch_with_new_path, *branch_with_dir_rename;
const char *old_path = pair->two->path;
const char *parent_name;
const char *cur_path;
int i, len;
entry = strmap_get_entry(&opt->priv->paths, old_path);
old_path = entry->key;
ci = entry->value;
VERIFY_CI(ci);
/* Find parent directories missing from opt->priv->paths */
cur_path = new_path;
while (1) {
/* Find the parent directory of cur_path */
char *last_slash = strrchr(cur_path, '/');
if (last_slash) {
parent_name = xstrndup(cur_path, last_slash - cur_path);
} else {
parent_name = opt->priv->toplevel_dir;
break;
}
/* Look it up in opt->priv->paths */
entry = strmap_get_entry(&opt->priv->paths, parent_name);
if (entry) {
free((char*)parent_name);
parent_name = entry->key; /* reuse known pointer */
break;
}
/* Record this is one of the directories we need to insert */
string_list_append(&dirs_to_insert, parent_name);
cur_path = parent_name;
}
/* Traverse dirs_to_insert and insert them into opt->priv->paths */
for (i = dirs_to_insert.nr-1; i >= 0; --i) {
struct conflict_info *dir_ci;
char *cur_dir = dirs_to_insert.items[i].string;
dir_ci = xcalloc(1, sizeof(*dir_ci));
dir_ci->merged.directory_name = parent_name;
len = strlen(parent_name);
/* len+1 because of trailing '/' character */
dir_ci->merged.basename_offset = (len > 0 ? len+1 : len);
dir_ci->dirmask = ci->filemask;
strmap_put(&opt->priv->paths, cur_dir, dir_ci);
parent_name = cur_dir;
}
/*
* We are removing old_path from opt->priv->paths. old_path also will
* eventually need to be freed, but it may still be used by e.g.
* ci->pathnames. So, store it in another string-list for now.
*/
string_list_append(&opt->priv->paths_to_free, old_path);
assert(ci->filemask == 2 || ci->filemask == 4);
assert(ci->dirmask == 0);
strmap_remove(&opt->priv->paths, old_path, 0);
branch_with_new_path = (ci->filemask == 2) ? opt->branch1 : opt->branch2;
branch_with_dir_rename = (ci->filemask == 2) ? opt->branch2 : opt->branch1;
/* Now, finally update ci and stick it into opt->priv->paths */
ci->merged.directory_name = parent_name;
len = strlen(parent_name);
ci->merged.basename_offset = (len > 0 ? len+1 : len);
new_ci = strmap_get(&opt->priv->paths, new_path);
if (!new_ci) {
/* Place ci back into opt->priv->paths, but at new_path */
strmap_put(&opt->priv->paths, new_path, ci);
} else {
int index;
/* A few sanity checks */
VERIFY_CI(new_ci);
assert(ci->filemask == 2 || ci->filemask == 4);
assert((new_ci->filemask & ci->filemask) == 0);
assert(!new_ci->merged.clean);
/* Copy stuff from ci into new_ci */
new_ci->filemask |= ci->filemask;
if (new_ci->dirmask)
new_ci->df_conflict = 1;
index = (ci->filemask >> 1);
new_ci->pathnames[index] = ci->pathnames[index];
new_ci->stages[index].mode = ci->stages[index].mode;
oidcpy(&new_ci->stages[index].oid, &ci->stages[index].oid);
free(ci);
ci = new_ci;
}
if (opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE) {
/* Notify user of updated path */
if (pair->status == 'A')
path_msg(opt, new_path, 1,
_("Path updated: %s added in %s inside a "
"directory that was renamed in %s; moving "
"it to %s."),
old_path, branch_with_new_path,
branch_with_dir_rename, new_path);
else
path_msg(opt, new_path, 1,
_("Path updated: %s renamed to %s in %s, "
"inside a directory that was renamed in %s; "
"moving it to %s."),
pair->one->path, old_path, branch_with_new_path,
branch_with_dir_rename, new_path);
} else {
/*
* opt->detect_directory_renames has the value
* MERGE_DIRECTORY_RENAMES_CONFLICT, so mark these as conflicts.
*/
ci->path_conflict = 1;
if (pair->status == 'A')
path_msg(opt, new_path, 0,
_("CONFLICT (file location): %s added in %s "
"inside a directory that was renamed in %s, "
"suggesting it should perhaps be moved to "
"%s."),
old_path, branch_with_new_path,
branch_with_dir_rename, new_path);
else
path_msg(opt, new_path, 0,
_("CONFLICT (file location): %s renamed to %s "
"in %s, inside a directory that was renamed "
"in %s, suggesting it should perhaps be "
"moved to %s."),
pair->one->path, old_path, branch_with_new_path,
branch_with_dir_rename, new_path);
}
/*
* Finally, record the new location.
*/
pair->two->path = new_path;
}
/*** Function Grouping: functions related to regular rename detection ***/
static int process_renames(struct merge_options *opt,
struct diff_queue_struct *renames)
{
int clean_merge = 1, i;
for (i = 0; i < renames->nr; ++i) {
const char *oldpath = NULL, *newpath;
struct diff_filepair *pair = renames->queue[i];
struct conflict_info *oldinfo = NULL, *newinfo = NULL;
struct strmap_entry *old_ent, *new_ent;
unsigned int old_sidemask;
int target_index, other_source_index;
int source_deleted, collision, type_changed;
const char *rename_branch = NULL, *delete_branch = NULL;
old_ent = strmap_get_entry(&opt->priv->paths, pair->one->path);
new_ent = strmap_get_entry(&opt->priv->paths, pair->two->path);
if (old_ent) {
oldpath = old_ent->key;
oldinfo = old_ent->value;
}
newpath = pair->two->path;
if (new_ent) {
newpath = new_ent->key;
newinfo = new_ent->value;
}
/*
* If pair->one->path isn't in opt->priv->paths, that means
* that either directory rename detection removed that
* path, or a parent directory of oldpath was resolved and
* we don't even need the rename; in either case, we can
* skip it. If oldinfo->merged.clean, then the other side
* of history had no changes to oldpath and we don't need
* the rename and can skip it.
*/
if (!oldinfo || oldinfo->merged.clean)
continue;
/*
* diff_filepairs have copies of pathnames, thus we have to
* use standard 'strcmp()' (negated) instead of '=='.
*/
if (i + 1 < renames->nr &&
!strcmp(oldpath, renames->queue[i+1]->one->path)) {
/* Handle rename/rename(1to2) or rename/rename(1to1) */
const char *pathnames[3];
struct version_info merged;
struct conflict_info *base, *side1, *side2;
unsigned was_binary_blob = 0;
pathnames[0] = oldpath;
pathnames[1] = newpath;
pathnames[2] = renames->queue[i+1]->two->path;
base = strmap_get(&opt->priv->paths, pathnames[0]);
side1 = strmap_get(&opt->priv->paths, pathnames[1]);
side2 = strmap_get(&opt->priv->paths, pathnames[2]);
VERIFY_CI(base);
VERIFY_CI(side1);
VERIFY_CI(side2);
if (!strcmp(pathnames[1], pathnames[2])) {
/* Both sides renamed the same way */
assert(side1 == side2);
memcpy(&side1->stages[0], &base->stages[0],
sizeof(merged));
side1->filemask |= (1 << MERGE_BASE);
/* Mark base as resolved by removal */
base->merged.is_null = 1;
base->merged.clean = 1;
/* We handled both renames, i.e. i+1 handled */
i++;
/* Move to next rename */
continue;
}
/* This is a rename/rename(1to2) */
clean_merge = handle_content_merge(opt,
pair->one->path,
&base->stages[0],
&side1->stages[1],
&side2->stages[2],
pathnames,
1 + 2 * opt->priv->call_depth,
&merged);
if (!clean_merge &&
merged.mode == side1->stages[1].mode &&
oideq(&merged.oid, &side1->stages[1].oid))
was_binary_blob = 1;
memcpy(&side1->stages[1], &merged, sizeof(merged));
if (was_binary_blob) {
/*
* Getting here means we were attempting to
* merge a binary blob.
*
* Since we can't merge binaries,
* handle_content_merge() just takes one
* side. But we don't want to copy the
* contents of one side to both paths. We
* used the contents of side1 above for
* side1->stages, let's use the contents of
* side2 for side2->stages below.
*/
oidcpy(&merged.oid, &side2->stages[2].oid);
merged.mode = side2->stages[2].mode;
}
memcpy(&side2->stages[2], &merged, sizeof(merged));
side1->path_conflict = 1;
side2->path_conflict = 1;
/*
* TODO: For renames we normally remove the path at the
* old name. It would thus seem consistent to do the
* same for rename/rename(1to2) cases, but we haven't
* done so traditionally and a number of the regression
* tests now encode an expectation that the file is
* left there at stage 1. If we ever decide to change
* this, add the following two lines here:
* base->merged.is_null = 1;
* base->merged.clean = 1;
* and remove the setting of base->path_conflict to 1.
*/
base->path_conflict = 1;
path_msg(opt, oldpath, 0,
_("CONFLICT (rename/rename): %s renamed to "
"%s in %s and to %s in %s."),
pathnames[0],
pathnames[1], opt->branch1,
pathnames[2], opt->branch2);
i++; /* We handled both renames, i.e. i+1 handled */
continue;
}
VERIFY_CI(oldinfo);
VERIFY_CI(newinfo);
target_index = pair->score; /* from collect_renames() */
assert(target_index == 1 || target_index == 2);
other_source_index = 3 - target_index;
old_sidemask = (1 << other_source_index); /* 2 or 4 */
source_deleted = (oldinfo->filemask == 1);
collision = ((newinfo->filemask & old_sidemask) != 0);
type_changed = !source_deleted &&
(S_ISREG(oldinfo->stages[other_source_index].mode) !=
S_ISREG(newinfo->stages[target_index].mode));
if (type_changed && collision) {
/*
* special handling so later blocks can handle this...
*
* if type_changed && collision are both true, then this
* was really a double rename, but one side wasn't
* detected due to lack of break detection. I.e.
* something like
* orig: has normal file 'foo'
* side1: renames 'foo' to 'bar', adds 'foo' symlink
* side2: renames 'foo' to 'bar'
* In this case, the foo->bar rename on side1 won't be
* detected because the new symlink named 'foo' is
* there and we don't do break detection. But we detect
* this here because we don't want to merge the content
* of the foo symlink with the foo->bar file, so we
* have some logic to handle this special case. The
* easiest way to do that is make 'bar' on side1 not
* be considered a colliding file but the other part
* of a normal rename. If the file is very different,
* well we're going to get content merge conflicts
* anyway so it doesn't hurt. And if the colliding
* file also has a different type, that'll be handled
* by the content merge logic in process_entry() too.
*
* See also t6430, 'rename vs. rename/symlink'
*/
collision = 0;
}
if (source_deleted) {
if (target_index == 1) {
rename_branch = opt->branch1;
delete_branch = opt->branch2;
} else {
rename_branch = opt->branch2;
delete_branch = opt->branch1;
}
}
assert(source_deleted || oldinfo->filemask & old_sidemask);
/* Need to check for special types of rename conflicts... */
if (collision && !source_deleted) {
/* collision: rename/add or rename/rename(2to1) */
const char *pathnames[3];
struct version_info merged;
struct conflict_info *base, *side1, *side2;
unsigned clean;
pathnames[0] = oldpath;
pathnames[other_source_index] = oldpath;
pathnames[target_index] = newpath;
base = strmap_get(&opt->priv->paths, pathnames[0]);
side1 = strmap_get(&opt->priv->paths, pathnames[1]);
side2 = strmap_get(&opt->priv->paths, pathnames[2]);
VERIFY_CI(base);
VERIFY_CI(side1);
VERIFY_CI(side2);
clean = handle_content_merge(opt, pair->one->path,
&base->stages[0],
&side1->stages[1],
&side2->stages[2],
pathnames,
1 + 2 * opt->priv->call_depth,
&merged);
memcpy(&newinfo->stages[target_index], &merged,
sizeof(merged));
if (!clean) {
path_msg(opt, newpath, 0,
_("CONFLICT (rename involved in "
"collision): rename of %s -> %s has "
"content conflicts AND collides "
"with another path; this may result "
"in nested conflict markers."),
oldpath, newpath);
}
} else if (collision && source_deleted) {
/*
* rename/add/delete or rename/rename(2to1)/delete:
* since oldpath was deleted on the side that didn't
* do the rename, there's not much of a content merge
* we can do for the rename. oldinfo->merged.is_null
* was already set, so we just leave things as-is so
* they look like an add/add conflict.
*/
newinfo->path_conflict = 1;
path_msg(opt, newpath, 0,
_("CONFLICT (rename/delete): %s renamed "
"to %s in %s, but deleted in %s."),
oldpath, newpath, rename_branch, delete_branch);
} else {
/*
* a few different cases...start by copying the
* existing stage(s) from oldinfo over the newinfo
* and update the pathname(s).
*/
memcpy(&newinfo->stages[0], &oldinfo->stages[0],
sizeof(newinfo->stages[0]));
newinfo->filemask |= (1 << MERGE_BASE);
newinfo->pathnames[0] = oldpath;
if (type_changed) {
/* rename vs. typechange */
/* Mark the original as resolved by removal */
memcpy(&oldinfo->stages[0].oid, &null_oid,
sizeof(oldinfo->stages[0].oid));
oldinfo->stages[0].mode = 0;
oldinfo->filemask &= 0x06;
} else if (source_deleted) {
/* rename/delete */
newinfo->path_conflict = 1;
path_msg(opt, newpath, 0,
_("CONFLICT (rename/delete): %s renamed"
" to %s in %s, but deleted in %s."),
oldpath, newpath,
rename_branch, delete_branch);
} else {
/* normal rename */
memcpy(&newinfo->stages[other_source_index],
&oldinfo->stages[other_source_index],
sizeof(newinfo->stages[0]));
newinfo->filemask |= (1 << other_source_index);
newinfo->pathnames[other_source_index] = oldpath;
}
}
if (!type_changed) {
/* Mark the original as resolved by removal */
oldinfo->merged.is_null = 1;
oldinfo->merged.clean = 1;
}
}
return clean_merge;
}
static int compare_pairs(const void *a_, const void *b_)
{
const struct diff_filepair *a = *((const struct diff_filepair **)a_);
const struct diff_filepair *b = *((const struct diff_filepair **)b_);
return strcmp(a->one->path, b->one->path);
}
/* Call diffcore_rename() to compute which files have changed on given side */
static void detect_regular_renames(struct merge_options *opt,
struct tree *merge_base,
struct tree *side,
unsigned side_index)
{
struct diff_options diff_opts;
struct rename_info *renames = &opt->priv->renames;
repo_diff_setup(opt->repo, &diff_opts);
diff_opts.flags.recursive = 1;
diff_opts.flags.rename_empty = 0;
diff_opts.detect_rename = DIFF_DETECT_RENAME;
diff_opts.rename_limit = opt->rename_limit;
if (opt->rename_limit <= 0)
diff_opts.rename_limit = 1000;
diff_opts.rename_score = opt->rename_score;
diff_opts.show_rename_progress = opt->show_rename_progress;
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
diff_setup_done(&diff_opts);
trace2_region_enter("diff", "diffcore_rename", opt->repo);
diff_tree_oid(&merge_base->object.oid, &side->object.oid, "",
&diff_opts);
diffcore_std(&diff_opts);
trace2_region_leave("diff", "diffcore_rename", opt->repo);
if (diff_opts.needed_rename_limit > renames->needed_limit)
renames->needed_limit = diff_opts.needed_rename_limit;
renames->pairs[side_index] = diff_queued_diff;
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
diff_queued_diff.nr = 0;
diff_queued_diff.queue = NULL;
diff_flush(&diff_opts);
}
/*
* Get information of all renames which occurred in 'side_pairs', discarding
* non-renames.
*/
static int collect_renames(struct merge_options *opt,
struct diff_queue_struct *result,
unsigned side_index,
struct strmap *dir_renames_for_side,
struct strmap *rename_exclusions)
{
int i, clean = 1;
struct strmap collisions;
struct diff_queue_struct *side_pairs;
struct hashmap_iter iter;
struct strmap_entry *entry;
struct rename_info *renames = &opt->priv->renames;
side_pairs = &renames->pairs[side_index];
compute_collisions(&collisions, dir_renames_for_side, side_pairs);
for (i = 0; i < side_pairs->nr; ++i) {
struct diff_filepair *p = side_pairs->queue[i];
char *new_path; /* non-NULL only with directory renames */
if (p->status != 'A' && p->status != 'R') {
diff_free_filepair(p);
continue;
}
new_path = check_for_directory_rename(opt, p->two->path,
side_index,
dir_renames_for_side,
rename_exclusions,
&collisions,
&clean);
if (p->status != 'R' && !new_path) {
diff_free_filepair(p);
continue;
}
if (new_path)
apply_directory_rename_modifications(opt, p, new_path);
/*
* p->score comes back from diffcore_rename_extended() with
* the similarity of the renamed file. The similarity is
* was used to determine that the two files were related
* and are a rename, which we have already used, but beyond
* that we have no use for the similarity. So p->score is
* now irrelevant. However, process_renames() will need to
* know which side of the merge this rename was associated
* with, so overwrite p->score with that value.
*/
p->score = side_index;
result->queue[result->nr++] = p;
}
/* Free each value in the collisions map */
strmap_for_each_entry(&collisions, &iter, entry) {
struct collision_info *info = entry->value;
string_list_clear(&info->source_files, 0);
}
/*
* In compute_collisions(), we set collisions.strdup_strings to 0
* so that we wouldn't have to make another copy of the new_path
* allocated by apply_dir_rename(). But now that we've used them
* and have no other references to these strings, it is time to
* deallocate them.
*/
free_strmap_strings(&collisions);
strmap_clear(&collisions, 1);
return clean;
}
static int detect_and_process_renames(struct merge_options *opt,
struct tree *merge_base,
struct tree *side1,
struct tree *side2)
{
struct diff_queue_struct combined;
struct rename_info *renames = &opt->priv->renames;
int need_dir_renames, s, clean = 1;
memset(&combined, 0, sizeof(combined));
trace2_region_enter("merge", "regular renames", opt->repo);
detect_regular_renames(opt, merge_base, side1, MERGE_SIDE1);
detect_regular_renames(opt, merge_base, side2, MERGE_SIDE2);
trace2_region_leave("merge", "regular renames", opt->repo);
trace2_region_enter("merge", "directory renames", opt->repo);
need_dir_renames =
!opt->priv->call_depth &&
(opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_TRUE ||
opt->detect_directory_renames == MERGE_DIRECTORY_RENAMES_CONFLICT);
if (need_dir_renames) {
get_provisional_directory_renames(opt, MERGE_SIDE1, &clean);
get_provisional_directory_renames(opt, MERGE_SIDE2, &clean);
handle_directory_level_conflicts(opt);
}
ALLOC_GROW(combined.queue,
renames->pairs[1].nr + renames->pairs[2].nr,
combined.alloc);
clean &= collect_renames(opt, &combined, MERGE_SIDE1,
&renames->dir_renames[2],
&renames->dir_renames[1]);
clean &= collect_renames(opt, &combined, MERGE_SIDE2,
&renames->dir_renames[1],
&renames->dir_renames[2]);
QSORT(combined.queue, combined.nr, compare_pairs);
trace2_region_leave("merge", "directory renames", opt->repo);
trace2_region_enter("merge", "process renames", opt->repo);
clean &= process_renames(opt, &combined);
trace2_region_leave("merge", "process renames", opt->repo);
/* Free memory for renames->pairs[] and combined */
for (s = MERGE_SIDE1; s <= MERGE_SIDE2; s++) {
free(renames->pairs[s].queue);
DIFF_QUEUE_CLEAR(&renames->pairs[s]);
}
if (combined.nr) {
int i;
for (i = 0; i < combined.nr; i++)
diff_free_filepair(combined.queue[i]);
free(combined.queue);
}
return clean;
}
/*** Function Grouping: functions related to process_entries() ***/
static int string_list_df_name_compare(const char *one, const char *two)
{
int onelen = strlen(one);
int twolen = strlen(two);
/*
* Here we only care that entries for D/F conflicts are
* adjacent, in particular with the file of the D/F conflict
* appearing before files below the corresponding directory.
* The order of the rest of the list is irrelevant for us.
*
* To achieve this, we sort with df_name_compare and provide
* the mode S_IFDIR so that D/F conflicts will sort correctly.
* We use the mode S_IFDIR for everything else for simplicity,
* since in other cases any changes in their order due to
* sorting cause no problems for us.
*/
int cmp = df_name_compare(one, onelen, S_IFDIR,
two, twolen, S_IFDIR);
/*
* Now that 'foo' and 'foo/bar' compare equal, we have to make sure
* that 'foo' comes before 'foo/bar'.
*/
if (cmp)
return cmp;
return onelen - twolen;
}
struct directory_versions {
/*
* versions: list of (basename -> version_info)
*
* The basenames are in reverse lexicographic order of full pathnames,
* as processed in process_entries(). This puts all entries within
* a directory together, and covers the directory itself after
* everything within it, allowing us to write subtrees before needing
* to record information for the tree itself.
*/
struct string_list versions;
/*
* offsets: list of (full relative path directories -> integer offsets)
*
* Since versions contains basenames from files in multiple different
* directories, we need to know which entries in versions correspond
* to which directories. Values of e.g.
* "" 0
* src 2
* src/moduleA 5
* Would mean that entries 0-1 of versions are files in the toplevel
* directory, entries 2-4 are files under src/, and the remaining
* entries starting at index 5 are files under src/moduleA/.
*/
struct string_list offsets;
/*
* last_directory: directory that previously processed file found in
*
* last_directory starts NULL, but records the directory in which the
* previous file was found within. As soon as
* directory(current_file) != last_directory
* then we need to start updating accounting in versions & offsets.
* Note that last_directory is always the last path in "offsets" (or
* NULL if "offsets" is empty) so this exists just for quick access.
*/
const char *last_directory;
/* last_directory_len: cached computation of strlen(last_directory) */
unsigned last_directory_len;
};
static int tree_entry_order(const void *a_, const void *b_)
{
const struct string_list_item *a = a_;
const struct string_list_item *b = b_;
const struct merged_info *ami = a->util;
const struct merged_info *bmi = b->util;
return base_name_compare(a->string, strlen(a->string), ami->result.mode,
b->string, strlen(b->string), bmi->result.mode);
}
static void write_tree(struct object_id *result_oid,
struct string_list *versions,
unsigned int offset,
size_t hash_size)
{
size_t maxlen = 0, extra;
unsigned int nr = versions->nr - offset;
struct strbuf buf = STRBUF_INIT;
struct string_list relevant_entries = STRING_LIST_INIT_NODUP;
int i;
/*
* We want to sort the last (versions->nr-offset) entries in versions.
* Do so by abusing the string_list API a bit: make another string_list
* that contains just those entries and then sort them.
*
* We won't use relevant_entries again and will let it just pop off the
* stack, so there won't be allocation worries or anything.
*/
relevant_entries.items = versions->items + offset;
relevant_entries.nr = versions->nr - offset;
QSORT(relevant_entries.items, relevant_entries.nr, tree_entry_order);
/* Pre-allocate some space in buf */
extra = hash_size + 8; /* 8: 6 for mode, 1 for space, 1 for NUL char */
for (i = 0; i < nr; i++) {
maxlen += strlen(versions->items[offset+i].string) + extra;
}
strbuf_grow(&buf, maxlen);
/* Write each entry out to buf */
for (i = 0; i < nr; i++) {
struct merged_info *mi = versions->items[offset+i].util;
struct version_info *ri = &mi->result;
strbuf_addf(&buf, "%o %s%c",
ri->mode,
versions->items[offset+i].string, '\0');
strbuf_add(&buf, ri->oid.hash, hash_size);
}
/* Write this object file out, and record in result_oid */
write_object_file(buf.buf, buf.len, tree_type, result_oid);
strbuf_release(&buf);
}
static void record_entry_for_tree(struct directory_versions *dir_metadata,
const char *path,
struct merged_info *mi)
{
const char *basename;
if (mi->is_null)
/* nothing to record */
return;
basename = path + mi->basename_offset;
assert(strchr(basename, '/') == NULL);
string_list_append(&dir_metadata->versions,
basename)->util = &mi->result;
}
static void write_completed_directory(struct merge_options *opt,
const char *new_directory_name,
struct directory_versions *info)
{
const char *prev_dir;
struct merged_info *dir_info = NULL;
unsigned int offset;
/*
* Some explanation of info->versions and info->offsets...
*
* process_entries() iterates over all relevant files AND
* directories in reverse lexicographic order, and calls this
* function. Thus, an example of the paths that process_entries()
* could operate on (along with the directories for those paths
* being shown) is:
*
* xtract.c ""
* tokens.txt ""
* src/moduleB/umm.c src/moduleB
* src/moduleB/stuff.h src/moduleB
* src/moduleB/baz.c src/moduleB
* src/moduleB src
* src/moduleA/foo.c src/moduleA
* src/moduleA/bar.c src/moduleA
* src/moduleA src
* src ""
* Makefile ""
*
* info->versions:
*
* always contains the unprocessed entries and their
* version_info information. For example, after the first five
* entries above, info->versions would be:
*
* xtract.c <xtract.c's version_info>
* token.txt <token.txt's version_info>
* umm.c <src/moduleB/umm.c's version_info>
* stuff.h <src/moduleB/stuff.h's version_info>
* baz.c <src/moduleB/baz.c's version_info>
*
* Once a subdirectory is completed we remove the entries in
* that subdirectory from info->versions, writing it as a tree
* (write_tree()). Thus, as soon as we get to src/moduleB,
* info->versions would be updated to
*
* xtract.c <xtract.c's version_info>
* token.txt <token.txt's version_info>
* moduleB <src/moduleB's version_info>
*
* info->offsets:
*
* helps us track which entries in info->versions correspond to
* which directories. When we are N directories deep (e.g. 4
* for src/modA/submod/subdir/), we have up to N+1 unprocessed
* directories (+1 because of toplevel dir). Corresponding to
* the info->versions example above, after processing five entries
* info->offsets will be:
*
* "" 0
* src/moduleB 2
*
* which is used to know that xtract.c & token.txt are from the
* toplevel dirctory, while umm.c & stuff.h & baz.c are from the
* src/moduleB directory. Again, following the example above,
* once we need to process src/moduleB, then info->offsets is
* updated to
*
* "" 0
* src 2
*
* which says that moduleB (and only moduleB so far) is in the
* src directory.
*
* One unique thing to note about info->offsets here is that
* "src" was not added to info->offsets until there was a path
* (a file OR directory) immediately below src/ that got
* processed.
*
* Since process_entry() just appends new entries to info->versions,
* write_completed_directory() only needs to do work if the next path
* is in a directory that is different than the last directory found
* in info->offsets.
*/
/*
* If we are working with the same directory as the last entry, there
* is no work to do. (See comments above the directory_name member of
* struct merged_info for why we can use pointer comparison instead of
* strcmp here.)
*/
if (new_directory_name == info->last_directory)
return;
/*
* If we are just starting (last_directory is NULL), or last_directory
* is a prefix of the current directory, then we can just update
* info->offsets to record the offset where we started this directory
* and update last_directory to have quick access to it.
*/
if (info->last_directory == NULL ||
!strncmp(new_directory_name, info->last_directory,
info->last_directory_len)) {
uintptr_t offset = info->versions.nr;
info->last_directory = new_directory_name;
info->last_directory_len = strlen(info->last_directory);
/*
* Record the offset into info->versions where we will
* start recording basenames of paths found within
* new_directory_name.
*/
string_list_append(&info->offsets,
info->last_directory)->util = (void*)offset;
return;
}
/*
* The next entry that will be processed will be within
* new_directory_name. Since at this point we know that
* new_directory_name is within a different directory than
* info->last_directory, we have all entries for info->last_directory
* in info->versions and we need to create a tree object for them.
*/
dir_info = strmap_get(&opt->priv->paths, info->last_directory);
assert(dir_info);
offset = (uintptr_t)info->offsets.items[info->offsets.nr-1].util;
if (offset == info->versions.nr) {
/*
* Actually, we don't need to create a tree object in this
* case. Whenever all files within a directory disappear
* during the merge (e.g. unmodified on one side and
* deleted on the other, or files were renamed elsewhere),
* then we get here and the directory itself needs to be
* omitted from its parent tree as well.
*/
dir_info->is_null = 1;
} else {
/*
* Write out the tree to the git object directory, and also
* record the mode and oid in dir_info->result.
*/
dir_info->is_null = 0;
dir_info->result.mode = S_IFDIR;
write_tree(&dir_info->result.oid, &info->versions, offset,
opt->repo->hash_algo->rawsz);
}
/*
* We've now used several entries from info->versions and one entry
* from info->offsets, so we get rid of those values.
*/
info->offsets.nr--;
info->versions.nr = offset;
/*
* Now we've taken care of the completed directory, but we need to
* prepare things since future entries will be in
* new_directory_name. (In particular, process_entry() will be
* appending new entries to info->versions.) So, we need to make
* sure new_directory_name is the last entry in info->offsets.
*/
prev_dir = info->offsets.nr == 0 ? NULL :
info->offsets.items[info->offsets.nr-1].string;
if (new_directory_name != prev_dir) {
uintptr_t c = info->versions.nr;
string_list_append(&info->offsets,
new_directory_name)->util = (void*)c;
}
/* And, of course, we need to update last_directory to match. */
info->last_directory = new_directory_name;
info->last_directory_len = strlen(info->last_directory);
}
/* Per entry merge function */
static void process_entry(struct merge_options *opt,
const char *path,
struct conflict_info *ci,
struct directory_versions *dir_metadata)
{
int df_file_index = 0;
VERIFY_CI(ci);
assert(ci->filemask >= 0 && ci->filemask <= 7);
/* ci->match_mask == 7 was handled in collect_merge_info_callback() */
assert(ci->match_mask == 0 || ci->match_mask == 3 ||
ci->match_mask == 5 || ci->match_mask == 6);
if (ci->dirmask) {
record_entry_for_tree(dir_metadata, path, &ci->merged);
if (ci->filemask == 0)
/* nothing else to handle */
return;
assert(ci->df_conflict);
}
if (ci->df_conflict && ci->merged.result.mode == 0) {
int i;
/*
* directory no longer in the way, but we do have a file we
* need to place here so we need to clean away the "directory
* merges to nothing" result.
*/
ci->df_conflict = 0;
assert(ci->filemask != 0);
ci->merged.clean = 0;
ci->merged.is_null = 0;
/* and we want to zero out any directory-related entries */
ci->match_mask = (ci->match_mask & ~ci->dirmask);
ci->dirmask = 0;
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
if (ci->filemask & (1 << i))
continue;
ci->stages[i].mode = 0;
oidcpy(&ci->stages[i].oid, &null_oid);
}
} else if (ci->df_conflict && ci->merged.result.mode != 0) {
/*
* This started out as a D/F conflict, and the entries in
* the competing directory were not removed by the merge as
* evidenced by write_completed_directory() writing a value
* to ci->merged.result.mode.
*/
struct conflict_info *new_ci;
const char *branch;
const char *old_path = path;
int i;
assert(ci->merged.result.mode == S_IFDIR);
/*
* If filemask is 1, we can just ignore the file as having
* been deleted on both sides. We do not want to overwrite
* ci->merged.result, since it stores the tree for all the
* files under it.
*/
if (ci->filemask == 1) {
ci->filemask = 0;
return;
}
/*
* This file still exists on at least one side, and we want
* the directory to remain here, so we need to move this
* path to some new location.
*/
new_ci = xcalloc(1, sizeof(*new_ci));
/* We don't really want new_ci->merged.result copied, but it'll
* be overwritten below so it doesn't matter. We also don't
* want any directory mode/oid values copied, but we'll zero
* those out immediately. We do want the rest of ci copied.
*/
memcpy(new_ci, ci, sizeof(*ci));
new_ci->match_mask = (new_ci->match_mask & ~new_ci->dirmask);
new_ci->dirmask = 0;
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
if (new_ci->filemask & (1 << i))
continue;
/* zero out any entries related to directories */
new_ci->stages[i].mode = 0;
oidcpy(&new_ci->stages[i].oid, &null_oid);
}
/*
* Find out which side this file came from; note that we
* cannot just use ci->filemask, because renames could cause
* the filemask to go back to 7. So we use dirmask, then
* pick the opposite side's index.
*/
df_file_index = (ci->dirmask & (1 << 1)) ? 2 : 1;
branch = (df_file_index == 1) ? opt->branch1 : opt->branch2;
path = unique_path(&opt->priv->paths, path, branch);
strmap_put(&opt->priv->paths, path, new_ci);
path_msg(opt, path, 0,
_("CONFLICT (file/directory): directory in the way "
"of %s from %s; moving it to %s instead."),
old_path, branch, path);
/*
* Zero out the filemask for the old ci. At this point, ci
* was just an entry for a directory, so we don't need to
* do anything more with it.
*/
ci->filemask = 0;
/*
* Now note that we're working on the new entry (path was
* updated above.
*/
ci = new_ci;
}
/*
* NOTE: Below there is a long switch-like if-elseif-elseif... block
* which the code goes through even for the df_conflict cases
* above.
*/
if (ci->match_mask) {
ci->merged.clean = 1;
if (ci->match_mask == 6) {
/* stages[1] == stages[2] */
ci->merged.result.mode = ci->stages[1].mode;
oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
} else {
/* determine the mask of the side that didn't match */
unsigned int othermask = 7 & ~ci->match_mask;
int side = (othermask == 4) ? 2 : 1;
ci->merged.result.mode = ci->stages[side].mode;
ci->merged.is_null = !ci->merged.result.mode;
oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
assert(othermask == 2 || othermask == 4);
assert(ci->merged.is_null ==
(ci->filemask == ci->match_mask));
}
} else if (ci->filemask >= 6 &&
(S_IFMT & ci->stages[1].mode) !=
(S_IFMT & ci->stages[2].mode)) {
/* Two different items from (file/submodule/symlink) */
if (opt->priv->call_depth) {
/* Just use the version from the merge base */
ci->merged.clean = 0;
oidcpy(&ci->merged.result.oid, &ci->stages[0].oid);
ci->merged.result.mode = ci->stages[0].mode;
ci->merged.is_null = (ci->merged.result.mode == 0);
} else {
/* Handle by renaming one or both to separate paths. */
unsigned o_mode = ci->stages[0].mode;
unsigned a_mode = ci->stages[1].mode;
unsigned b_mode = ci->stages[2].mode;
struct conflict_info *new_ci;
const char *a_path = NULL, *b_path = NULL;
int rename_a = 0, rename_b = 0;
new_ci = xmalloc(sizeof(*new_ci));
if (S_ISREG(a_mode))
rename_a = 1;
else if (S_ISREG(b_mode))
rename_b = 1;
else {
rename_a = 1;
rename_b = 1;
}
path_msg(opt, path, 0,
_("CONFLICT (distinct types): %s had different "
"types on each side; renamed %s of them so "
"each can be recorded somewhere."),
path,
(rename_a && rename_b) ? _("both") : _("one"));
ci->merged.clean = 0;
memcpy(new_ci, ci, sizeof(*new_ci));
/* Put b into new_ci, removing a from stages */
new_ci->merged.result.mode = ci->stages[2].mode;
oidcpy(&new_ci->merged.result.oid, &ci->stages[2].oid);
new_ci->stages[1].mode = 0;
oidcpy(&new_ci->stages[1].oid, &null_oid);
new_ci->filemask = 5;
if ((S_IFMT & b_mode) != (S_IFMT & o_mode)) {
new_ci->stages[0].mode = 0;
oidcpy(&new_ci->stages[0].oid, &null_oid);
new_ci->filemask = 4;
}
/* Leave only a in ci, fixing stages. */
ci->merged.result.mode = ci->stages[1].mode;
oidcpy(&ci->merged.result.oid, &ci->stages[1].oid);
ci->stages[2].mode = 0;
oidcpy(&ci->stages[2].oid, &null_oid);
ci->filemask = 3;
if ((S_IFMT & a_mode) != (S_IFMT & o_mode)) {
ci->stages[0].mode = 0;
oidcpy(&ci->stages[0].oid, &null_oid);
ci->filemask = 2;
}
/* Insert entries into opt->priv_paths */
assert(rename_a || rename_b);
if (rename_a) {
a_path = unique_path(&opt->priv->paths,
path, opt->branch1);
strmap_put(&opt->priv->paths, a_path, ci);
}
if (rename_b)
b_path = unique_path(&opt->priv->paths,
path, opt->branch2);
else
b_path = path;
strmap_put(&opt->priv->paths, b_path, new_ci);
if (rename_a && rename_b) {
strmap_remove(&opt->priv->paths, path, 0);
/*
* We removed path from opt->priv->paths. path
* will also eventually need to be freed, but
* it may still be used by e.g. ci->pathnames.
* So, store it in another string-list for now.
*/
string_list_append(&opt->priv->paths_to_free,
path);
}
/*
* Do special handling for b_path since process_entry()
* won't be called on it specially.
*/
strmap_put(&opt->priv->conflicted, b_path, new_ci);
record_entry_for_tree(dir_metadata, b_path,
&new_ci->merged);
/*
* Remaining code for processing this entry should
* think in terms of processing a_path.
*/
if (a_path)
path = a_path;
}
} else if (ci->filemask >= 6) {
/* Need a two-way or three-way content merge */
struct version_info merged_file;
unsigned clean_merge;
struct version_info *o = &ci->stages[0];
struct version_info *a = &ci->stages[1];
struct version_info *b = &ci->stages[2];
clean_merge = handle_content_merge(opt, path, o, a, b,
ci->pathnames,
opt->priv->call_depth * 2,
&merged_file);
ci->merged.clean = clean_merge &&
!ci->df_conflict && !ci->path_conflict;
ci->merged.result.mode = merged_file.mode;
ci->merged.is_null = (merged_file.mode == 0);
oidcpy(&ci->merged.result.oid, &merged_file.oid);
if (clean_merge && ci->df_conflict) {
assert(df_file_index == 1 || df_file_index == 2);
ci->filemask = 1 << df_file_index;
ci->stages[df_file_index].mode = merged_file.mode;
oidcpy(&ci->stages[df_file_index].oid, &merged_file.oid);
}
if (!clean_merge) {
const char *reason = _("content");
if (ci->filemask == 6)
reason = _("add/add");
if (S_ISGITLINK(merged_file.mode))
reason = _("submodule");
path_msg(opt, path, 0,
_("CONFLICT (%s): Merge conflict in %s"),
reason, path);
}
} else if (ci->filemask == 3 || ci->filemask == 5) {
/* Modify/delete */
const char *modify_branch, *delete_branch;
int side = (ci->filemask == 5) ? 2 : 1;
int index = opt->priv->call_depth ? 0 : side;
ci->merged.result.mode = ci->stages[index].mode;
oidcpy(&ci->merged.result.oid, &ci->stages[index].oid);
ci->merged.clean = 0;
modify_branch = (side == 1) ? opt->branch1 : opt->branch2;
delete_branch = (side == 1) ? opt->branch2 : opt->branch1;
if (ci->path_conflict &&
oideq(&ci->stages[0].oid, &ci->stages[side].oid)) {
/*
* This came from a rename/delete; no action to take,
* but avoid printing "modify/delete" conflict notice
* since the contents were not modified.
*/
} else {
path_msg(opt, path, 0,
_("CONFLICT (modify/delete): %s deleted in %s "
"and modified in %s. Version %s of %s left "
"in tree."),
path, delete_branch, modify_branch,
modify_branch, path);
}
} else if (ci->filemask == 2 || ci->filemask == 4) {
/* Added on one side */
int side = (ci->filemask == 4) ? 2 : 1;
ci->merged.result.mode = ci->stages[side].mode;
oidcpy(&ci->merged.result.oid, &ci->stages[side].oid);
ci->merged.clean = !ci->df_conflict && !ci->path_conflict;
} else if (ci->filemask == 1) {
/* Deleted on both sides */
ci->merged.is_null = 1;
ci->merged.result.mode = 0;
oidcpy(&ci->merged.result.oid, &null_oid);
ci->merged.clean = !ci->path_conflict;
}
/*
* If still conflicted, record it separately. This allows us to later
* iterate over just conflicted entries when updating the index instead
* of iterating over all entries.
*/
if (!ci->merged.clean)
strmap_put(&opt->priv->conflicted, path, ci);
record_entry_for_tree(dir_metadata, path, &ci->merged);
}
static void process_entries(struct merge_options *opt,
struct object_id *result_oid)
{
struct hashmap_iter iter;
struct strmap_entry *e;
struct string_list plist = STRING_LIST_INIT_NODUP;
struct string_list_item *entry;
struct directory_versions dir_metadata = { STRING_LIST_INIT_NODUP,
STRING_LIST_INIT_NODUP,
NULL, 0 };
trace2_region_enter("merge", "process_entries setup", opt->repo);
if (strmap_empty(&opt->priv->paths)) {
oidcpy(result_oid, opt->repo->hash_algo->empty_tree);
return;
}
/* Hack to pre-allocate plist to the desired size */
trace2_region_enter("merge", "plist grow", opt->repo);
ALLOC_GROW(plist.items, strmap_get_size(&opt->priv->paths), plist.alloc);
trace2_region_leave("merge", "plist grow", opt->repo);
/* Put every entry from paths into plist, then sort */
trace2_region_enter("merge", "plist copy", opt->repo);
strmap_for_each_entry(&opt->priv->paths, &iter, e) {
string_list_append(&plist, e->key)->util = e->value;
}
trace2_region_leave("merge", "plist copy", opt->repo);
trace2_region_enter("merge", "plist special sort", opt->repo);
plist.cmp = string_list_df_name_compare;
string_list_sort(&plist);
trace2_region_leave("merge", "plist special sort", opt->repo);
trace2_region_leave("merge", "process_entries setup", opt->repo);
/*
* Iterate over the items in reverse order, so we can handle paths
* below a directory before needing to handle the directory itself.
*
* This allows us to write subtrees before we need to write trees,
* and it also enables sane handling of directory/file conflicts
* (because it allows us to know whether the directory is still in
* the way when it is time to process the file at the same path).
*/
trace2_region_enter("merge", "processing", opt->repo);
for (entry = &plist.items[plist.nr-1]; entry >= plist.items; --entry) {
char *path = entry->string;
/*
* NOTE: mi may actually be a pointer to a conflict_info, but
* we have to check mi->clean first to see if it's safe to
* reassign to such a pointer type.
*/
struct merged_info *mi = entry->util;
write_completed_directory(opt, mi->directory_name,
&dir_metadata);
if (mi->clean)
record_entry_for_tree(&dir_metadata, path, mi);
else {
struct conflict_info *ci = (struct conflict_info *)mi;
process_entry(opt, path, ci, &dir_metadata);
}
}
trace2_region_leave("merge", "processing", opt->repo);
trace2_region_enter("merge", "process_entries cleanup", opt->repo);
if (dir_metadata.offsets.nr != 1 ||
(uintptr_t)dir_metadata.offsets.items[0].util != 0) {
printf("dir_metadata.offsets.nr = %d (should be 1)\n",
dir_metadata.offsets.nr);
printf("dir_metadata.offsets.items[0].util = %u (should be 0)\n",
(unsigned)(uintptr_t)dir_metadata.offsets.items[0].util);
fflush(stdout);
BUG("dir_metadata accounting completely off; shouldn't happen");
}
write_tree(result_oid, &dir_metadata.versions, 0,
opt->repo->hash_algo->rawsz);
string_list_clear(&plist, 0);
string_list_clear(&dir_metadata.versions, 0);
string_list_clear(&dir_metadata.offsets, 0);
trace2_region_leave("merge", "process_entries cleanup", opt->repo);
}
/*** Function Grouping: functions related to merge_switch_to_result() ***/
static int checkout(struct merge_options *opt,
struct tree *prev,
struct tree *next)
{
/* Switch the index/working copy from old to new */
int ret;
struct tree_desc trees[2];
struct unpack_trees_options unpack_opts;
memset(&unpack_opts, 0, sizeof(unpack_opts));
unpack_opts.head_idx = -1;
unpack_opts.src_index = opt->repo->index;
unpack_opts.dst_index = opt->repo->index;
setup_unpack_trees_porcelain(&unpack_opts, "merge");
/*
* NOTE: if this were just "git checkout" code, we would probably
* read or refresh the cache and check for a conflicted index, but
* builtin/merge.c or sequencer.c really needs to read the index
* and check for conflicted entries before starting merging for a
* good user experience (no sense waiting for merges/rebases before
* erroring out), so there's no reason to duplicate that work here.
*/
/* 2-way merge to the new branch */
unpack_opts.update = 1;
unpack_opts.merge = 1;
unpack_opts.quiet = 0; /* FIXME: sequencer might want quiet? */
unpack_opts.verbose_update = (opt->verbosity > 2);
unpack_opts.fn = twoway_merge;
if (1/* FIXME: opts->overwrite_ignore*/) {
unpack_opts.dir = xcalloc(1, sizeof(*unpack_opts.dir));
unpack_opts.dir->flags |= DIR_SHOW_IGNORED;
setup_standard_excludes(unpack_opts.dir);
}
parse_tree(prev);
init_tree_desc(&trees[0], prev->buffer, prev->size);
parse_tree(next);
init_tree_desc(&trees[1], next->buffer, next->size);
ret = unpack_trees(2, trees, &unpack_opts);
clear_unpack_trees_porcelain(&unpack_opts);
dir_clear(unpack_opts.dir);
FREE_AND_NULL(unpack_opts.dir);
return ret;
}
static int record_conflicted_index_entries(struct merge_options *opt,
struct index_state *index,
struct strmap *paths,
struct strmap *conflicted)
{
struct hashmap_iter iter;
struct strmap_entry *e;
int errs = 0;
int original_cache_nr;
if (strmap_empty(conflicted))
return 0;
original_cache_nr = index->cache_nr;
/* Put every entry from paths into plist, then sort */
strmap_for_each_entry(conflicted, &iter, e) {
const char *path = e->key;
struct conflict_info *ci = e->value;
int pos;
struct cache_entry *ce;
int i;
VERIFY_CI(ci);
/*
* The index will already have a stage=0 entry for this path,
* because we created an as-merged-as-possible version of the
* file and checkout() moved the working copy and index over
* to that version.
*
* However, previous iterations through this loop will have
* added unstaged entries to the end of the cache which
* ignore the standard alphabetical ordering of cache
* entries and break invariants needed for index_name_pos()
* to work. However, we know the entry we want is before
* those appended cache entries, so do a temporary swap on
* cache_nr to only look through entries of interest.
*/
SWAP(index->cache_nr, original_cache_nr);
pos = index_name_pos(index, path, strlen(path));
SWAP(index->cache_nr, original_cache_nr);
if (pos < 0) {
if (ci->filemask != 1)
BUG("Conflicted %s but nothing in basic working tree or index; this shouldn't happen", path);
cache_tree_invalidate_path(index, path);
} else {
ce = index->cache[pos];
/*
* Clean paths with CE_SKIP_WORKTREE set will not be
* written to the working tree by the unpack_trees()
* call in checkout(). Our conflicted entries would
* have appeared clean to that code since we ignored
* the higher order stages. Thus, we need override
* the CE_SKIP_WORKTREE bit and manually write those
* files to the working disk here.
*
* TODO: Implement this CE_SKIP_WORKTREE fixup.
*/
/*
* Mark this cache entry for removal and instead add
* new stage>0 entries corresponding to the
* conflicts. If there are many conflicted entries, we
* want to avoid memmove'ing O(NM) entries by
* inserting the new entries one at a time. So,
* instead, we just add the new cache entries to the
* end (ignoring normal index requirements on sort
* order) and sort the index once we're all done.
*/
ce->ce_flags |= CE_REMOVE;
}
for (i = MERGE_BASE; i <= MERGE_SIDE2; i++) {
struct version_info *vi;
if (!(ci->filemask & (1ul << i)))
continue;
vi = &ci->stages[i];
ce = make_cache_entry(index, vi->mode, &vi->oid,
path, i+1, 0);
add_index_entry(index, ce, ADD_CACHE_JUST_APPEND);
}
}
/*
* Remove the unused cache entries (and invalidate the relevant
* cache-trees), then sort the index entries to get the conflicted
* entries we added to the end into their right locations.
*/
remove_marked_cache_entries(index, 1);
QSORT(index->cache, index->cache_nr, cmp_cache_name_compare);
return errs;
}
void merge_switch_to_result(struct merge_options *opt,
struct tree *head,
struct merge_result *result,
int update_worktree_and_index,
int display_update_msgs)
{
assert(opt->priv == NULL);
if (result->clean >= 0 && update_worktree_and_index) {
struct merge_options_internal *opti = result->priv;
trace2_region_enter("merge", "checkout", opt->repo);
if (checkout(opt, head, result->tree)) {
/* failure to function */
result->clean = -1;
return;
}
trace2_region_leave("merge", "checkout", opt->repo);
trace2_region_enter("merge", "record_conflicted", opt->repo);
if (record_conflicted_index_entries(opt, opt->repo->index,
&opti->paths,
&opti->conflicted)) {
/* failure to function */
result->clean = -1;
return;
}
trace2_region_leave("merge", "record_conflicted", opt->repo);
}
if (display_update_msgs) {
struct merge_options_internal *opti = result->priv;
struct hashmap_iter iter;
struct strmap_entry *e;
struct string_list olist = STRING_LIST_INIT_NODUP;
int i;
trace2_region_enter("merge", "display messages", opt->repo);
/* Hack to pre-allocate olist to the desired size */
ALLOC_GROW(olist.items, strmap_get_size(&opti->output),
olist.alloc);
/* Put every entry from output into olist, then sort */
strmap_for_each_entry(&opti->output, &iter, e) {
string_list_append(&olist, e->key)->util = e->value;
}
string_list_sort(&olist);
/* Iterate over the items, printing them */
for (i = 0; i < olist.nr; ++i) {
struct strbuf *sb = olist.items[i].util;
printf("%s", sb->buf);
}
string_list_clear(&olist, 0);
/* Also include needed rename limit adjustment now */
diff_warn_rename_limit("merge.renamelimit",
opti->renames.needed_limit, 0);
trace2_region_leave("merge", "display messages", opt->repo);
}
merge_finalize(opt, result);
}
void merge_finalize(struct merge_options *opt,
struct merge_result *result)
{
struct merge_options_internal *opti = result->priv;
assert(opt->priv == NULL);
clear_or_reinit_internal_opts(opti, 0);
FREE_AND_NULL(opti);
}
/*** Function Grouping: helper functions for merge_incore_*() ***/
static inline void set_commit_tree(struct commit *c, struct tree *t)
{
c->maybe_tree = t;
}
static struct commit *make_virtual_commit(struct repository *repo,
struct tree *tree,
const char *comment)
{
struct commit *commit = alloc_commit_node(repo);
set_merge_remote_desc(commit, comment, (struct object *)commit);
set_commit_tree(commit, tree);
commit->object.parsed = 1;
return commit;
}
static void merge_start(struct merge_options *opt, struct merge_result *result)
{
struct rename_info *renames;
int i;
/* Sanity checks on opt */
trace2_region_enter("merge", "sanity checks", opt->repo);
assert(opt->repo);
assert(opt->branch1 && opt->branch2);
assert(opt->detect_directory_renames >= MERGE_DIRECTORY_RENAMES_NONE &&
opt->detect_directory_renames <= MERGE_DIRECTORY_RENAMES_TRUE);
assert(opt->rename_limit >= -1);
assert(opt->rename_score >= 0 && opt->rename_score <= MAX_SCORE);
assert(opt->show_rename_progress >= 0 && opt->show_rename_progress <= 1);
assert(opt->xdl_opts >= 0);
assert(opt->recursive_variant >= MERGE_VARIANT_NORMAL &&
opt->recursive_variant <= MERGE_VARIANT_THEIRS);
/*
* detect_renames, verbosity, buffer_output, and obuf are ignored
* fields that were used by "recursive" rather than "ort" -- but
* sanity check them anyway.
*/
assert(opt->detect_renames >= -1 &&
opt->detect_renames <= DIFF_DETECT_COPY);
assert(opt->verbosity >= 0 && opt->verbosity <= 5);
assert(opt->buffer_output <= 2);
assert(opt->obuf.len == 0);
assert(opt->priv == NULL);
if (result->priv) {
opt->priv = result->priv;
result->priv = NULL;
/*
* opt->priv non-NULL means we had results from a previous
* run; do a few sanity checks that user didn't mess with
* it in an obvious fashion.
*/
assert(opt->priv->call_depth == 0);
assert(!opt->priv->toplevel_dir ||
0 == strlen(opt->priv->toplevel_dir));
}
trace2_region_leave("merge", "sanity checks", opt->repo);
/* Default to histogram diff. Actually, just hardcode it...for now. */
opt->xdl_opts = DIFF_WITH_ALG(opt, HISTOGRAM_DIFF);
/* Initialization of opt->priv, our internal merge data */
trace2_region_enter("merge", "allocate/init", opt->repo);
if (opt->priv) {
clear_or_reinit_internal_opts(opt->priv, 1);
trace2_region_leave("merge", "allocate/init", opt->repo);
return;
}
opt->priv = xcalloc(1, sizeof(*opt->priv));
/* Initialization of various renames fields */
renames = &opt->priv->renames;
for (i = MERGE_SIDE1; i <= MERGE_SIDE2; i++) {
strset_init_with_options(&renames->dirs_removed[i],
NULL, 0);
strmap_init_with_options(&renames->dir_rename_count[i],
NULL, 1);
strmap_init_with_options(&renames->dir_renames[i],
NULL, 0);
}
/*
* Although we initialize opt->priv->paths with strdup_strings=0,
* that's just to avoid making yet another copy of an allocated
* string. Putting the entry into paths means we are taking
* ownership, so we will later free it. paths_to_free is similar.
*
* In contrast, conflicted just has a subset of keys from paths, so
* we don't want to free those (it'd be a duplicate free).
*/
strmap_init_with_options(&opt->priv->paths, NULL, 0);
strmap_init_with_options(&opt->priv->conflicted, NULL, 0);
string_list_init(&opt->priv->paths_to_free, 0);
/*
* keys & strbufs in output will sometimes need to outlive "paths",
* so it will have a copy of relevant keys. It's probably a small
* subset of the overall paths that have special output.
*/
strmap_init(&opt->priv->output);
trace2_region_leave("merge", "allocate/init", opt->repo);
}
/*** Function Grouping: merge_incore_*() and their internal variants ***/
/*
* Originally from merge_trees_internal(); heavily adapted, though.
*/
static void merge_ort_nonrecursive_internal(struct merge_options *opt,
struct tree *merge_base,
struct tree *side1,
struct tree *side2,
struct merge_result *result)
{
struct object_id working_tree_oid;
trace2_region_enter("merge", "collect_merge_info", opt->repo);
if (collect_merge_info(opt, merge_base, side1, side2) != 0) {
/*
* TRANSLATORS: The %s arguments are: 1) tree hash of a merge
* base, and 2-3) the trees for the two trees we're merging.
*/
err(opt, _("collecting merge info failed for trees %s, %s, %s"),
oid_to_hex(&merge_base->object.oid),
oid_to_hex(&side1->object.oid),
oid_to_hex(&side2->object.oid));
result->clean = -1;
return;
}
trace2_region_leave("merge", "collect_merge_info", opt->repo);
trace2_region_enter("merge", "renames", opt->repo);
result->clean = detect_and_process_renames(opt, merge_base,
side1, side2);
trace2_region_leave("merge", "renames", opt->repo);
trace2_region_enter("merge", "process_entries", opt->repo);
process_entries(opt, &working_tree_oid);
trace2_region_leave("merge", "process_entries", opt->repo);
/* Set return values */
result->tree = parse_tree_indirect(&working_tree_oid);
/* existence of conflicted entries implies unclean */
result->clean &= strmap_empty(&opt->priv->conflicted);
if (!opt->priv->call_depth) {
result->priv = opt->priv;
opt->priv = NULL;
}
}
/*
* Originally from merge_recursive_internal(); somewhat adapted, though.
*/
static void merge_ort_internal(struct merge_options *opt,
struct commit_list *merge_bases,
struct commit *h1,
struct commit *h2,
struct merge_result *result)
{
struct commit_list *iter;
struct commit *merged_merge_bases;
const char *ancestor_name;
struct strbuf merge_base_abbrev = STRBUF_INIT;
if (!merge_bases) {
merge_bases = get_merge_bases(h1, h2);
/* See merge-ort.h:merge_incore_recursive() declaration NOTE */
merge_bases = reverse_commit_list(merge_bases);
}
merged_merge_bases = pop_commit(&merge_bases);
if (merged_merge_bases == NULL) {
/* if there is no common ancestor, use an empty tree */
struct tree *tree;
tree = lookup_tree(opt->repo, opt->repo->hash_algo->empty_tree);
merged_merge_bases = make_virtual_commit(opt->repo, tree,
"ancestor");
ancestor_name = "empty tree";
} else if (merge_bases) {
ancestor_name = "merged common ancestors";
} else {
strbuf_add_unique_abbrev(&merge_base_abbrev,
&merged_merge_bases->object.oid,
DEFAULT_ABBREV);
ancestor_name = merge_base_abbrev.buf;
}
for (iter = merge_bases; iter; iter = iter->next) {
const char *saved_b1, *saved_b2;
struct commit *prev = merged_merge_bases;
opt->priv->call_depth++;
/*
* When the merge fails, the result contains files
* with conflict markers. The cleanness flag is
* ignored (unless indicating an error), it was never
* actually used, as result of merge_trees has always
* overwritten it: the committed "conflicts" were
* already resolved.
*/
saved_b1 = opt->branch1;
saved_b2 = opt->branch2;
opt->branch1 = "Temporary merge branch 1";
opt->branch2 = "Temporary merge branch 2";
merge_ort_internal(opt, NULL, prev, iter->item, result);
if (result->clean < 0)
return;
opt->branch1 = saved_b1;
opt->branch2 = saved_b2;
opt->priv->call_depth--;
merged_merge_bases = make_virtual_commit(opt->repo,
result->tree,
"merged tree");
commit_list_insert(prev, &merged_merge_bases->parents);
commit_list_insert(iter->item,
&merged_merge_bases->parents->next);
clear_or_reinit_internal_opts(opt->priv, 1);
}
opt->ancestor = ancestor_name;
merge_ort_nonrecursive_internal(opt,
repo_get_commit_tree(opt->repo,
merged_merge_bases),
repo_get_commit_tree(opt->repo, h1),
repo_get_commit_tree(opt->repo, h2),
result);
strbuf_release(&merge_base_abbrev);
opt->ancestor = NULL; /* avoid accidental re-use of opt->ancestor */
}
void merge_incore_nonrecursive(struct merge_options *opt,
struct tree *merge_base,
struct tree *side1,
struct tree *side2,
struct merge_result *result)
{
trace2_region_enter("merge", "incore_nonrecursive", opt->repo);
trace2_region_enter("merge", "merge_start", opt->repo);
assert(opt->ancestor != NULL);
merge_start(opt, result);
trace2_region_leave("merge", "merge_start", opt->repo);
merge_ort_nonrecursive_internal(opt, merge_base, side1, side2, result);
trace2_region_leave("merge", "incore_nonrecursive", opt->repo);
}
void merge_incore_recursive(struct merge_options *opt,
struct commit_list *merge_bases,
struct commit *side1,
struct commit *side2,
struct merge_result *result)
{
trace2_region_enter("merge", "incore_recursive", opt->repo);
/* We set the ancestor label based on the merge_bases */
assert(opt->ancestor == NULL);
trace2_region_enter("merge", "merge_start", opt->repo);
merge_start(opt, result);
trace2_region_leave("merge", "merge_start", opt->repo);
merge_ort_internal(opt, merge_bases, side1, side2, result);
trace2_region_leave("merge", "incore_recursive", opt->repo);
}