git-commit-vandalism/parallel-checkout.c
Matheus Tavares 611c7785e8 checkout: fix two bugs on the final count of updated entries
At the end of `git checkout <pathspec>`, we get a message informing how
many entries were updated in the working tree. However, this number can
be inaccurate for two reasons:

1) Delayed entries currently get counted twice.
2) Failed entries are included in the count.

The first problem happens because the counter is first incremented
before inserting the entry in the delayed checkout queue, and once again
when finish_delayed_checkout() calls checkout_entry(). And the second
happens because the counter is incremented too early in
checkout_entry(), before the entry was in fact checked out. Fix that by
moving the count increment further down in the call stack and removing
the duplicate increment on delayed entries. Note that we have to keep
a per-entry reference for the counter (both on parallel checkout and
delayed checkout) because not all entries are always accumulated at the
same counter. See checkout_worktree(), at builtin/checkout.c for an
example.

Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-07-14 10:19:28 -07:00

676 lines
18 KiB
C

#include "cache.h"
#include "config.h"
#include "entry.h"
#include "parallel-checkout.h"
#include "pkt-line.h"
#include "progress.h"
#include "run-command.h"
#include "sigchain.h"
#include "streaming.h"
#include "thread-utils.h"
#include "trace2.h"
struct pc_worker {
struct child_process cp;
size_t next_item_to_complete, nr_items_to_complete;
};
struct parallel_checkout {
enum pc_status status;
struct parallel_checkout_item *items; /* The parallel checkout queue. */
size_t nr, alloc;
struct progress *progress;
unsigned int *progress_cnt;
};
static struct parallel_checkout parallel_checkout;
enum pc_status parallel_checkout_status(void)
{
return parallel_checkout.status;
}
static const int DEFAULT_THRESHOLD_FOR_PARALLELISM = 100;
static const int DEFAULT_NUM_WORKERS = 1;
void get_parallel_checkout_configs(int *num_workers, int *threshold)
{
char *env_workers = getenv("GIT_TEST_CHECKOUT_WORKERS");
if (env_workers && *env_workers) {
if (strtol_i(env_workers, 10, num_workers)) {
die(_("invalid value for '%s': '%s'"),
"GIT_TEST_CHECKOUT_WORKERS", env_workers);
}
if (*num_workers < 1)
*num_workers = online_cpus();
*threshold = 0;
return;
}
if (git_config_get_int("checkout.workers", num_workers))
*num_workers = DEFAULT_NUM_WORKERS;
else if (*num_workers < 1)
*num_workers = online_cpus();
if (git_config_get_int("checkout.thresholdForParallelism", threshold))
*threshold = DEFAULT_THRESHOLD_FOR_PARALLELISM;
}
void init_parallel_checkout(void)
{
if (parallel_checkout.status != PC_UNINITIALIZED)
BUG("parallel checkout already initialized");
parallel_checkout.status = PC_ACCEPTING_ENTRIES;
}
static void finish_parallel_checkout(void)
{
if (parallel_checkout.status == PC_UNINITIALIZED)
BUG("cannot finish parallel checkout: not initialized yet");
free(parallel_checkout.items);
memset(&parallel_checkout, 0, sizeof(parallel_checkout));
}
static int is_eligible_for_parallel_checkout(const struct cache_entry *ce,
const struct conv_attrs *ca)
{
enum conv_attrs_classification c;
size_t packed_item_size;
/*
* Symlinks cannot be checked out in parallel as, in case of path
* collision, they could racily replace leading directories of other
* entries being checked out. Submodules are checked out in child
* processes, which have their own parallel checkout queues.
*/
if (!S_ISREG(ce->ce_mode))
return 0;
packed_item_size = sizeof(struct pc_item_fixed_portion) + ce->ce_namelen +
(ca->working_tree_encoding ? strlen(ca->working_tree_encoding) : 0);
/*
* The amount of data we send to the workers per checkout item is
* typically small (75~300B). So unless we find an insanely huge path
* of 64KB, we should never reach the 65KB limit of one pkt-line. If
* that does happen, we let the sequential code handle the item.
*/
if (packed_item_size > LARGE_PACKET_DATA_MAX)
return 0;
c = classify_conv_attrs(ca);
switch (c) {
case CA_CLASS_INCORE:
return 1;
case CA_CLASS_INCORE_FILTER:
/*
* It would be safe to allow concurrent instances of
* single-file smudge filters, like rot13, but we should not
* assume that all filters are parallel-process safe. So we
* don't allow this.
*/
return 0;
case CA_CLASS_INCORE_PROCESS:
/*
* The parallel queue and the delayed queue are not compatible,
* so they must be kept completely separated. And we can't tell
* if a long-running process will delay its response without
* actually asking it to perform the filtering. Therefore, this
* type of filter is not allowed in parallel checkout.
*
* Furthermore, there should only be one instance of the
* long-running process filter as we don't know how it is
* managing its own concurrency. So, spreading the entries that
* requisite such a filter among the parallel workers would
* require a lot more inter-process communication. We would
* probably have to designate a single process to interact with
* the filter and send all the necessary data to it, for each
* entry.
*/
return 0;
case CA_CLASS_STREAMABLE:
return 1;
default:
BUG("unsupported conv_attrs classification '%d'", c);
}
}
int enqueue_checkout(struct cache_entry *ce, struct conv_attrs *ca,
int *checkout_counter)
{
struct parallel_checkout_item *pc_item;
if (parallel_checkout.status != PC_ACCEPTING_ENTRIES ||
!is_eligible_for_parallel_checkout(ce, ca))
return -1;
ALLOC_GROW(parallel_checkout.items, parallel_checkout.nr + 1,
parallel_checkout.alloc);
pc_item = &parallel_checkout.items[parallel_checkout.nr];
pc_item->ce = ce;
memcpy(&pc_item->ca, ca, sizeof(pc_item->ca));
pc_item->status = PC_ITEM_PENDING;
pc_item->id = parallel_checkout.nr;
pc_item->checkout_counter = checkout_counter;
parallel_checkout.nr++;
return 0;
}
size_t pc_queue_size(void)
{
return parallel_checkout.nr;
}
static void advance_progress_meter(void)
{
if (parallel_checkout.progress) {
(*parallel_checkout.progress_cnt)++;
display_progress(parallel_checkout.progress,
*parallel_checkout.progress_cnt);
}
}
static int handle_results(struct checkout *state)
{
int ret = 0;
size_t i;
int have_pending = 0;
/*
* We first update the successfully written entries with the collected
* stat() data, so that they can be found by mark_colliding_entries(),
* in the next loop, when necessary.
*/
for (i = 0; i < parallel_checkout.nr; i++) {
struct parallel_checkout_item *pc_item = &parallel_checkout.items[i];
if (pc_item->status == PC_ITEM_WRITTEN)
update_ce_after_write(state, pc_item->ce, &pc_item->st);
}
for (i = 0; i < parallel_checkout.nr; i++) {
struct parallel_checkout_item *pc_item = &parallel_checkout.items[i];
switch(pc_item->status) {
case PC_ITEM_WRITTEN:
if (pc_item->checkout_counter)
(*pc_item->checkout_counter)++;
break;
case PC_ITEM_COLLIDED:
/*
* The entry could not be checked out due to a path
* collision with another entry. Since there can only
* be one entry of each colliding group on the disk, we
* could skip trying to check out this one and move on.
* However, this would leave the unwritten entries with
* null stat() fields on the index, which could
* potentially slow down subsequent operations that
* require refreshing it: git would not be able to
* trust st_size and would have to go to the filesystem
* to see if the contents match (see ie_modified()).
*
* Instead, let's pay the overhead only once, now, and
* call checkout_entry_ca() again for this file, to
* have its stat() data stored in the index. This also
* has the benefit of adding this entry and its
* colliding pair to the collision report message.
* Additionally, this overwriting behavior is consistent
* with what the sequential checkout does, so it doesn't
* add any extra overhead.
*/
ret |= checkout_entry_ca(pc_item->ce, &pc_item->ca,
state, NULL,
pc_item->checkout_counter);
advance_progress_meter();
break;
case PC_ITEM_PENDING:
have_pending = 1;
/* fall through */
case PC_ITEM_FAILED:
ret = -1;
break;
default:
BUG("unknown checkout item status in parallel checkout");
}
}
if (have_pending)
error("parallel checkout finished with pending entries");
return ret;
}
static int reset_fd(int fd, const char *path)
{
if (lseek(fd, 0, SEEK_SET) != 0)
return error_errno("failed to rewind descriptor of '%s'", path);
if (ftruncate(fd, 0))
return error_errno("failed to truncate file '%s'", path);
return 0;
}
static int write_pc_item_to_fd(struct parallel_checkout_item *pc_item, int fd,
const char *path)
{
int ret;
struct stream_filter *filter;
struct strbuf buf = STRBUF_INIT;
char *blob;
size_t size;
ssize_t wrote;
/* Sanity check */
assert(is_eligible_for_parallel_checkout(pc_item->ce, &pc_item->ca));
filter = get_stream_filter_ca(&pc_item->ca, &pc_item->ce->oid);
if (filter) {
if (stream_blob_to_fd(fd, &pc_item->ce->oid, filter, 1)) {
/* On error, reset fd to try writing without streaming */
if (reset_fd(fd, path))
return -1;
} else {
return 0;
}
}
blob = read_blob_entry(pc_item->ce, &size);
if (!blob)
return error("cannot read object %s '%s'",
oid_to_hex(&pc_item->ce->oid), pc_item->ce->name);
/*
* checkout metadata is used to give context for external process
* filters. Files requiring such filters are not eligible for parallel
* checkout, so pass NULL. Note: if that changes, the metadata must also
* be passed from the main process to the workers.
*/
ret = convert_to_working_tree_ca(&pc_item->ca, pc_item->ce->name,
blob, size, &buf, NULL);
if (ret) {
size_t newsize;
free(blob);
blob = strbuf_detach(&buf, &newsize);
size = newsize;
}
wrote = write_in_full(fd, blob, size);
free(blob);
if (wrote < 0)
return error("unable to write file '%s'", path);
return 0;
}
static int close_and_clear(int *fd)
{
int ret = 0;
if (*fd >= 0) {
ret = close(*fd);
*fd = -1;
}
return ret;
}
void write_pc_item(struct parallel_checkout_item *pc_item,
struct checkout *state)
{
unsigned int mode = (pc_item->ce->ce_mode & 0100) ? 0777 : 0666;
int fd = -1, fstat_done = 0;
struct strbuf path = STRBUF_INIT;
const char *dir_sep;
strbuf_add(&path, state->base_dir, state->base_dir_len);
strbuf_add(&path, pc_item->ce->name, pc_item->ce->ce_namelen);
dir_sep = find_last_dir_sep(path.buf);
/*
* The leading dirs should have been already created by now. But, in
* case of path collisions, one of the dirs could have been replaced by
* a symlink (checked out after we enqueued this entry for parallel
* checkout). Thus, we must check the leading dirs again.
*/
if (dir_sep && !has_dirs_only_path(path.buf, dir_sep - path.buf,
state->base_dir_len)) {
pc_item->status = PC_ITEM_COLLIDED;
trace2_data_string("pcheckout", NULL, "collision/dirname", path.buf);
goto out;
}
fd = open(path.buf, O_WRONLY | O_CREAT | O_EXCL, mode);
if (fd < 0) {
if (errno == EEXIST || errno == EISDIR) {
/*
* Errors which probably represent a path collision.
* Suppress the error message and mark the item to be
* retried later, sequentially. ENOTDIR and ENOENT are
* also interesting, but the above has_dirs_only_path()
* call should have already caught these cases.
*/
pc_item->status = PC_ITEM_COLLIDED;
trace2_data_string("pcheckout", NULL,
"collision/basename", path.buf);
} else {
error_errno("failed to open file '%s'", path.buf);
pc_item->status = PC_ITEM_FAILED;
}
goto out;
}
if (write_pc_item_to_fd(pc_item, fd, path.buf)) {
/* Error was already reported. */
pc_item->status = PC_ITEM_FAILED;
close_and_clear(&fd);
unlink(path.buf);
goto out;
}
fstat_done = fstat_checkout_output(fd, state, &pc_item->st);
if (close_and_clear(&fd)) {
error_errno("unable to close file '%s'", path.buf);
pc_item->status = PC_ITEM_FAILED;
goto out;
}
if (state->refresh_cache && !fstat_done && lstat(path.buf, &pc_item->st) < 0) {
error_errno("unable to stat just-written file '%s'", path.buf);
pc_item->status = PC_ITEM_FAILED;
goto out;
}
pc_item->status = PC_ITEM_WRITTEN;
out:
strbuf_release(&path);
}
static void send_one_item(int fd, struct parallel_checkout_item *pc_item)
{
size_t len_data;
char *data, *variant;
struct pc_item_fixed_portion *fixed_portion;
const char *working_tree_encoding = pc_item->ca.working_tree_encoding;
size_t name_len = pc_item->ce->ce_namelen;
size_t working_tree_encoding_len = working_tree_encoding ?
strlen(working_tree_encoding) : 0;
/*
* Any changes in the calculation of the message size must also be made
* in is_eligible_for_parallel_checkout().
*/
len_data = sizeof(struct pc_item_fixed_portion) + name_len +
working_tree_encoding_len;
data = xmalloc(len_data);
fixed_portion = (struct pc_item_fixed_portion *)data;
fixed_portion->id = pc_item->id;
fixed_portion->ce_mode = pc_item->ce->ce_mode;
fixed_portion->crlf_action = pc_item->ca.crlf_action;
fixed_portion->ident = pc_item->ca.ident;
fixed_portion->name_len = name_len;
fixed_portion->working_tree_encoding_len = working_tree_encoding_len;
/*
* We pad the unused bytes in the hash array because, otherwise,
* Valgrind would complain about passing uninitialized bytes to a
* write() syscall. The warning doesn't represent any real risk here,
* but it could hinder the detection of actual errors.
*/
oidcpy_with_padding(&fixed_portion->oid, &pc_item->ce->oid);
variant = data + sizeof(*fixed_portion);
if (working_tree_encoding_len) {
memcpy(variant, working_tree_encoding, working_tree_encoding_len);
variant += working_tree_encoding_len;
}
memcpy(variant, pc_item->ce->name, name_len);
packet_write(fd, data, len_data);
free(data);
}
static void send_batch(int fd, size_t start, size_t nr)
{
size_t i;
sigchain_push(SIGPIPE, SIG_IGN);
for (i = 0; i < nr; i++)
send_one_item(fd, &parallel_checkout.items[start + i]);
packet_flush(fd);
sigchain_pop(SIGPIPE);
}
static struct pc_worker *setup_workers(struct checkout *state, int num_workers)
{
struct pc_worker *workers;
int i, workers_with_one_extra_item;
size_t base_batch_size, batch_beginning = 0;
ALLOC_ARRAY(workers, num_workers);
for (i = 0; i < num_workers; i++) {
struct child_process *cp = &workers[i].cp;
child_process_init(cp);
cp->git_cmd = 1;
cp->in = -1;
cp->out = -1;
cp->clean_on_exit = 1;
strvec_push(&cp->args, "checkout--worker");
if (state->base_dir_len)
strvec_pushf(&cp->args, "--prefix=%s", state->base_dir);
if (start_command(cp))
die("failed to spawn checkout worker");
}
base_batch_size = parallel_checkout.nr / num_workers;
workers_with_one_extra_item = parallel_checkout.nr % num_workers;
for (i = 0; i < num_workers; i++) {
struct pc_worker *worker = &workers[i];
size_t batch_size = base_batch_size;
/* distribute the extra work evenly */
if (i < workers_with_one_extra_item)
batch_size++;
send_batch(worker->cp.in, batch_beginning, batch_size);
worker->next_item_to_complete = batch_beginning;
worker->nr_items_to_complete = batch_size;
batch_beginning += batch_size;
}
return workers;
}
static void finish_workers(struct pc_worker *workers, int num_workers)
{
int i;
/*
* Close pipes before calling finish_command() to let the workers
* exit asynchronously and avoid spending extra time on wait().
*/
for (i = 0; i < num_workers; i++) {
struct child_process *cp = &workers[i].cp;
if (cp->in >= 0)
close(cp->in);
if (cp->out >= 0)
close(cp->out);
}
for (i = 0; i < num_workers; i++) {
int rc = finish_command(&workers[i].cp);
if (rc > 128) {
/*
* For a normal non-zero exit, the worker should have
* already printed something useful to stderr. But a
* death by signal should be mentioned to the user.
*/
error("checkout worker %d died of signal %d", i, rc - 128);
}
}
free(workers);
}
static inline void assert_pc_item_result_size(int got, int exp)
{
if (got != exp)
BUG("wrong result size from checkout worker (got %dB, exp %dB)",
got, exp);
}
static void parse_and_save_result(const char *buffer, int len,
struct pc_worker *worker)
{
struct pc_item_result *res;
struct parallel_checkout_item *pc_item;
struct stat *st = NULL;
if (len < PC_ITEM_RESULT_BASE_SIZE)
BUG("too short result from checkout worker (got %dB, exp >=%dB)",
len, (int)PC_ITEM_RESULT_BASE_SIZE);
res = (struct pc_item_result *)buffer;
/*
* Worker should send either the full result struct on success, or
* just the base (i.e. no stat data), otherwise.
*/
if (res->status == PC_ITEM_WRITTEN) {
assert_pc_item_result_size(len, (int)sizeof(struct pc_item_result));
st = &res->st;
} else {
assert_pc_item_result_size(len, (int)PC_ITEM_RESULT_BASE_SIZE);
}
if (!worker->nr_items_to_complete)
BUG("received result from supposedly finished checkout worker");
if (res->id != worker->next_item_to_complete)
BUG("unexpected item id from checkout worker (got %"PRIuMAX", exp %"PRIuMAX")",
(uintmax_t)res->id, (uintmax_t)worker->next_item_to_complete);
worker->next_item_to_complete++;
worker->nr_items_to_complete--;
pc_item = &parallel_checkout.items[res->id];
pc_item->status = res->status;
if (st)
pc_item->st = *st;
if (res->status != PC_ITEM_COLLIDED)
advance_progress_meter();
}
static void gather_results_from_workers(struct pc_worker *workers,
int num_workers)
{
int i, active_workers = num_workers;
struct pollfd *pfds;
CALLOC_ARRAY(pfds, num_workers);
for (i = 0; i < num_workers; i++) {
pfds[i].fd = workers[i].cp.out;
pfds[i].events = POLLIN;
}
while (active_workers) {
int nr = poll(pfds, num_workers, -1);
if (nr < 0) {
if (errno == EINTR)
continue;
die_errno("failed to poll checkout workers");
}
for (i = 0; i < num_workers && nr > 0; i++) {
struct pc_worker *worker = &workers[i];
struct pollfd *pfd = &pfds[i];
if (!pfd->revents)
continue;
if (pfd->revents & POLLIN) {
int len = packet_read(pfd->fd, packet_buffer,
sizeof(packet_buffer), 0);
if (len < 0) {
BUG("packet_read() returned negative value");
} else if (!len) {
pfd->fd = -1;
active_workers--;
} else {
parse_and_save_result(packet_buffer,
len, worker);
}
} else if (pfd->revents & POLLHUP) {
pfd->fd = -1;
active_workers--;
} else if (pfd->revents & (POLLNVAL | POLLERR)) {
die("error polling from checkout worker");
}
nr--;
}
}
free(pfds);
}
static void write_items_sequentially(struct checkout *state)
{
size_t i;
for (i = 0; i < parallel_checkout.nr; i++) {
struct parallel_checkout_item *pc_item = &parallel_checkout.items[i];
write_pc_item(pc_item, state);
if (pc_item->status != PC_ITEM_COLLIDED)
advance_progress_meter();
}
}
int run_parallel_checkout(struct checkout *state, int num_workers, int threshold,
struct progress *progress, unsigned int *progress_cnt)
{
int ret;
if (parallel_checkout.status != PC_ACCEPTING_ENTRIES)
BUG("cannot run parallel checkout: uninitialized or already running");
parallel_checkout.status = PC_RUNNING;
parallel_checkout.progress = progress;
parallel_checkout.progress_cnt = progress_cnt;
if (parallel_checkout.nr < num_workers)
num_workers = parallel_checkout.nr;
if (num_workers <= 1 || parallel_checkout.nr < threshold) {
write_items_sequentially(state);
} else {
struct pc_worker *workers = setup_workers(state, num_workers);
gather_results_from_workers(workers, num_workers);
finish_workers(workers, num_workers);
}
ret = handle_results(state);
finish_parallel_checkout();
return ret;
}