HPA noticed that git-rebase fails when changes involve symlinks
in the middle of the hierarchy. Consider:
* The tree state before the patch is applied has arch/x86_64/boot
as a symlink pointing at ../i386/boot/
* The patch tries to remove arch/x86_64/boot symlink, and
create bunch of files there: .gitignore, Makefile, etc.
git-apply tries to be careful while applying patches; it never
touches the working tree until it is convinced that the patch
would apply cleanly. One of the check it does is that when it
knows a path is going to be created by the patch, it runs
lstat() on the path to make sure it does not exist.
This leads to a false alarm. Because we do not touch the
working tree before all the check passes, when we try to make
sure that arch/x86_64/boot/.gitignore does not exist yet, we
haven't removed the arch/x86_64/boot symlink. The lstat() check
ends up seeing arch/i386/boot/.gitignore through the
yet-to-be-removed symlink, and says "Hey, you already have a
file there, but what you fed me is a patch to create a new
file. I am not going to clobber what you have in the working
tree."
We have similar checks to see a file we are going to modify does
exist and match the preimage of the diff, which is done by
directly opening and reading the file.
For a file we are going to delete, we make sure that it does
exist and matches what is going to be removed (a removal patch
records the full preimage, so we check what you have in your
working tree matches it in full -- otherwise we would risk
losing your local changes), which again is done by directly
opening and reading the file.
These checks need to be adjusted so that they are not fooled by
symlinks in the middle.
- To make sure something does not exist, first lstat(). If it
does not exist, it does not, so be happy. If it _does_, we
might be getting fooled by a symlink in the middle, so break
leading paths and see if there are symlinks involved. When
we are checking for a path a/b/c/d, if any of a, a/b, a/b/c
is a symlink, then a/b/c/d does _NOT_ exist, for the purpose
of our test.
This would fix this particular case you saw, and would not
add extra overhead in the usual case.
- To make sure something already exists, first lstat(). If it
does not exist, barf (up to this, we already do). Even if it
does seem to exist, we might be getting fooled by a symlink
in the middle, so make sure leading paths are not symlinks.
This would make the normal codepath much more expensive for
deep trees, which is a bit worrisome.
This patch implements the first side of the check "making sure
it does not exist". The latter "making sure it exists" check is
not done yet, so applying the patch in reverse would still
fail, but we have to start from somewhere.
Signed-off-by: Junio C Hamano <junkio@cox.net>
Core GIT Tests
==============
This directory holds many test scripts for core GIT tools. The
first part of this short document describes how to run the tests
and read their output.
When fixing the tools or adding enhancements, you are strongly
encouraged to add tests in this directory to cover what you are
trying to fix or enhance. The later part of this short document
describes how your test scripts should be organized.
Running Tests
-------------
The easiest way to run tests is to say "make". This runs all
the tests.
*** t0000-basic.sh ***
* ok 1: .git/objects should be empty after git-init in an empty repo.
* ok 2: .git/objects should have 256 subdirectories.
* ok 3: git-update-index without --add should fail adding.
...
* ok 23: no diff after checkout and git-update-index --refresh.
* passed all 23 test(s)
*** t0100-environment-names.sh ***
* ok 1: using old names should issue warnings.
* ok 2: using old names but having new names should not issue warnings.
...
Or you can run each test individually from command line, like
this:
$ sh ./t3001-ls-files-killed.sh
* ok 1: git-update-index --add to add various paths.
* ok 2: git-ls-files -k to show killed files.
* ok 3: validate git-ls-files -k output.
* passed all 3 test(s)
You can pass --verbose (or -v), --debug (or -d), and --immediate
(or -i) command line argument to the test.
--verbose::
This makes the test more verbose. Specifically, the
command being run and their output if any are also
output.
--debug::
This may help the person who is developing a new test.
It causes the command defined with test_debug to run.
--immediate::
This causes the test to immediately exit upon the first
failed test.
Naming Tests
------------
The test files are named as:
tNNNN-commandname-details.sh
where N is a decimal digit.
First digit tells the family:
0 - the absolute basics and global stuff
1 - the basic commands concerning database
2 - the basic commands concerning the working tree
3 - the other basic commands (e.g. ls-files)
4 - the diff commands
5 - the pull and exporting commands
6 - the revision tree commands (even e.g. merge-base)
7 - the porcelainish commands concerning the working tree
8 - the porcelainish commands concerning forensics
9 - the git tools
Second digit tells the particular command we are testing.
Third digit (optionally) tells the particular switch or group of switches
we are testing.
If you create files under t/ directory (i.e. here) that is not
the top-level test script, never name the file to match the above
pattern. The Makefile here considers all such files as the
top-level test script and tries to run all of them. A care is
especially needed if you are creating a common test library
file, similar to test-lib.sh, because such a library file may
not be suitable for standalone execution.
Writing Tests
-------------
The test script is written as a shell script. It should start
with the standard "#!/bin/sh" with copyright notices, and an
assignment to variable 'test_description', like this:
#!/bin/sh
#
# Copyright (c) 2005 Junio C Hamano
#
test_description='xxx test (option --frotz)
This test registers the following structure in the cache
and tries to run git-ls-files with option --frotz.'
Source 'test-lib.sh'
--------------------
After assigning test_description, the test script should source
test-lib.sh like this:
. ./test-lib.sh
This test harness library does the following things:
- If the script is invoked with command line argument --help
(or -h), it shows the test_description and exits.
- Creates an empty test directory with an empty .git/objects
database and chdir(2) into it. This directory is 't/trash'
if you must know, but I do not think you care.
- Defines standard test helper functions for your scripts to
use. These functions are designed to make all scripts behave
consistently when command line arguments --verbose (or -v),
--debug (or -d), and --immediate (or -i) is given.
End with test_done
------------------
Your script will be a sequence of tests, using helper functions
from the test harness library. At the end of the script, call
'test_done'.
Test harness library
--------------------
There are a handful helper functions defined in the test harness
library for your script to use.
- test_expect_success <message> <script>
This takes two strings as parameter, and evaluates the
<script>. If it yields success, test is considered
successful. <message> should state what it is testing.
Example:
test_expect_success \
'git-write-tree should be able to write an empty tree.' \
'tree=$(git-write-tree)'
- test_expect_failure <message> <script>
This is the opposite of test_expect_success. If <script>
yields success, test is considered a failure.
Example:
test_expect_failure \
'git-update-index without --add should fail adding.' \
'git-update-index should-be-empty'
- test_debug <script>
This takes a single argument, <script>, and evaluates it only
when the test script is started with --debug command line
argument. This is primarily meant for use during the
development of a new test script.
- test_done
Your test script must have test_done at the end. Its purpose
is to summarize successes and failures in the test script and
exit with an appropriate error code.
Tips for Writing Tests
----------------------
As with any programming projects, existing programs are the best
source of the information. However, do _not_ emulate
t0000-basic.sh when writing your tests. The test is special in
that it tries to validate the very core of GIT. For example, it
knows that there will be 256 subdirectories under .git/objects/,
and it knows that the object ID of an empty tree is a certain
40-byte string. This is deliberately done so in t0000-basic.sh
because the things the very basic core test tries to achieve is
to serve as a basis for people who are changing the GIT internal
drastically. For these people, after making certain changes,
not seeing failures from the basic test _is_ a failure. And
such drastic changes to the core GIT that even changes these
otherwise supposedly stable object IDs should be accompanied by
an update to t0000-basic.sh.
However, other tests that simply rely on basic parts of the core
GIT working properly should not have that level of intimate
knowledge of the core GIT internals. If all the test scripts
hardcoded the object IDs like t0000-basic.sh does, that defeats
the purpose of t0000-basic.sh, which is to isolate that level of
validation in one place. Your test also ends up needing
updating when such a change to the internal happens, so do _not_
do it and leave the low level of validation to t0000-basic.sh.