0cc05b044f
Add a bug() function to use in cases where we'd like to indicate a runtime BUG(), but would like to defer the BUG() call because we're possibly accumulating more bug() callers to exhaustively indicate what went wrong. We already have this sort of facility in various parts of the codebase, just in the form of ad-hoc re-inventions of the functionality that this new API provides. E.g. this will be used to replace optbug() in parse-options.c, and the 'error("BUG:[...]' we do in a loop in builtin/receive-pack.c. Unlike the code this replaces we'll log to trace2 with this new bug() function (as with other usage.c functions, including BUG()), we'll also be able to avoid calls to xstrfmt() in some cases, as the bug() function itself accepts variadic sprintf()-like arguments. Any caller to bug() can follow up such calls with BUG_if_bug(), which will BUG() out (i.e. abort()) if there were any preceding calls to bug(), callers can also decide not to call BUG_if_bug() and leave the resulting BUG() invocation until exit() time. There are currently no bug() API users that don't call BUG_if_bug() themselves after a for-loop, but allowing for not calling BUG_if_bug() keeps the API flexible. As the tests and documentation here show we'll catch missing BUG_if_bug() invocations in our exit() wrapper. Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
309 lines
8.3 KiB
C
309 lines
8.3 KiB
C
#include "test-tool.h"
|
|
#include "cache.h"
|
|
#include "strvec.h"
|
|
#include "run-command.h"
|
|
#include "exec-cmd.h"
|
|
#include "config.h"
|
|
|
|
typedef int(fn_unit_test)(int argc, const char **argv);
|
|
|
|
struct unit_test {
|
|
fn_unit_test *ut_fn;
|
|
const char *ut_name;
|
|
const char *ut_usage;
|
|
};
|
|
|
|
#define MyOk 0
|
|
#define MyError 1
|
|
|
|
static int get_i(int *p_value, const char *data)
|
|
{
|
|
char *endptr;
|
|
|
|
if (!data || !*data)
|
|
return MyError;
|
|
|
|
*p_value = strtol(data, &endptr, 10);
|
|
if (*endptr || errno == ERANGE)
|
|
return MyError;
|
|
|
|
return MyOk;
|
|
}
|
|
|
|
/*
|
|
* Cause process to exit with the requested value via "return".
|
|
*
|
|
* Rely on test-tool.c:cmd_main() to call trace2_cmd_exit()
|
|
* with our result.
|
|
*
|
|
* Test harness can confirm:
|
|
* [] the process-exit value.
|
|
* [] the "code" field in the "exit" trace2 event.
|
|
* [] the "code" field in the "atexit" trace2 event.
|
|
* [] the "name" field in the "cmd_name" trace2 event.
|
|
* [] "def_param" events for all of the "interesting" pre-defined
|
|
* config settings.
|
|
*/
|
|
static int ut_001return(int argc, const char **argv)
|
|
{
|
|
int rc;
|
|
|
|
if (get_i(&rc, argv[0]))
|
|
die("expect <exit_code>");
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
* Cause the process to exit with the requested value via "exit()".
|
|
*
|
|
* Test harness can confirm:
|
|
* [] the "code" field in the "exit" trace2 event.
|
|
* [] the "code" field in the "atexit" trace2 event.
|
|
* [] the "name" field in the "cmd_name" trace2 event.
|
|
* [] "def_param" events for all of the "interesting" pre-defined
|
|
* config settings.
|
|
*/
|
|
static int ut_002exit(int argc, const char **argv)
|
|
{
|
|
int rc;
|
|
|
|
if (get_i(&rc, argv[0]))
|
|
die("expect <exit_code>");
|
|
|
|
exit(rc);
|
|
}
|
|
|
|
/*
|
|
* Send an "error" event with each value in argv. Normally, git only issues
|
|
* a single "error" event immediately before issuing an "exit" event (such
|
|
* as in die() or BUG()), but multiple "error" events are allowed.
|
|
*
|
|
* Test harness can confirm:
|
|
* [] a trace2 "error" event for each value in argv.
|
|
* [] the "name" field in the "cmd_name" trace2 event.
|
|
* [] (optional) the file:line in the "exit" event refers to this function.
|
|
*/
|
|
static int ut_003error(int argc, const char **argv)
|
|
{
|
|
int k;
|
|
|
|
if (!argv[0] || !*argv[0])
|
|
die("expect <error_message>");
|
|
|
|
for (k = 0; k < argc; k++)
|
|
error("%s", argv[k]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Run a child process and wait for it to finish and exit with its return code.
|
|
* test-tool trace2 004child [<child-command-line>]
|
|
*
|
|
* For example:
|
|
* test-tool trace2 004child git version
|
|
* test-tool trace2 004child test-tool trace2 001return 0
|
|
* test-tool trace2 004child test-tool trace2 004child test-tool trace2 004child
|
|
* test-tool trace2 004child git -c alias.xyz=version xyz
|
|
*
|
|
* Test harness can confirm:
|
|
* [] the "name" field in the "cmd_name" trace2 event.
|
|
* [] that the outer process has a single component SID (or depth "d0" in
|
|
* the PERF stream).
|
|
* [] that "child_start" and "child_exit" events are generated for the child.
|
|
* [] if the child process is an instrumented executable:
|
|
* [] that "version", "start", ..., "exit", and "atexit" events are
|
|
* generated by the child process.
|
|
* [] that the child process events have a multiple component SID (or
|
|
* depth "dN+1" in the PERF stream).
|
|
* [] that the child exit code is propagated to the parent process "exit"
|
|
* and "atexit" events..
|
|
* [] (optional) that the "t_abs" field in the child process "atexit" event
|
|
* is less than the "t_rel" field in the "child_exit" event of the parent
|
|
* process.
|
|
* [] if the child process is like the alias example above,
|
|
* [] (optional) the child process attempts to run "git-xyx" as a dashed
|
|
* command.
|
|
* [] the child process emits an "alias" event with "xyz" => "version"
|
|
* [] the child process runs "git version" as a child process.
|
|
* [] the child process has a 3 component SID (or depth "d2" in the PERF
|
|
* stream).
|
|
*/
|
|
static int ut_004child(int argc, const char **argv)
|
|
{
|
|
int result;
|
|
|
|
/*
|
|
* Allow empty <child_command_line> so we can do arbitrarily deep
|
|
* command nesting and let the last one be null.
|
|
*/
|
|
if (!argc)
|
|
return 0;
|
|
|
|
result = run_command_v_opt(argv, 0);
|
|
exit(result);
|
|
}
|
|
|
|
/*
|
|
* Exec a git command. This may either create a child process (Windows)
|
|
* or replace the existing process.
|
|
* test-tool trace2 005exec <git_command_args>
|
|
*
|
|
* For example:
|
|
* test-tool trace2 005exec version
|
|
*
|
|
* Test harness can confirm (on Windows):
|
|
* [] the "name" field in the "cmd_name" trace2 event.
|
|
* [] that the outer process has a single component SID (or depth "d0" in
|
|
* the PERF stream).
|
|
* [] that "exec" and "exec_result" events are generated for the child
|
|
* process (since the Windows compatibility layer fakes an exec() with
|
|
* a CreateProcess(), WaitForSingleObject(), and exit()).
|
|
* [] that the child process has multiple component SID (or depth "dN+1"
|
|
* in the PERF stream).
|
|
*
|
|
* Test harness can confirm (on platforms with a real exec() function):
|
|
* [] TODO talk about process replacement and how it affects SID.
|
|
*/
|
|
static int ut_005exec(int argc, const char **argv)
|
|
{
|
|
int result;
|
|
|
|
if (!argc)
|
|
return 0;
|
|
|
|
result = execv_git_cmd(argv);
|
|
return result;
|
|
}
|
|
|
|
static int ut_006data(int argc, const char **argv)
|
|
{
|
|
const char *usage_error =
|
|
"expect <cat0> <k0> <v0> [<cat1> <k1> <v1> [...]]";
|
|
|
|
if (argc % 3 != 0)
|
|
die("%s", usage_error);
|
|
|
|
while (argc) {
|
|
if (!argv[0] || !*argv[0] || !argv[1] || !*argv[1] ||
|
|
!argv[2] || !*argv[2])
|
|
die("%s", usage_error);
|
|
|
|
trace2_data_string(argv[0], the_repository, argv[1], argv[2]);
|
|
argv += 3;
|
|
argc -= 3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ut_007BUG(int argc, const char **argv)
|
|
{
|
|
/*
|
|
* Exercise BUG() to ensure that the message is printed to trace2.
|
|
*/
|
|
BUG("the bug message");
|
|
}
|
|
|
|
static int ut_008bug(int argc, const char **argv)
|
|
{
|
|
bug("a bug message");
|
|
bug("another bug message");
|
|
BUG_if_bug("an explicit BUG_if_bug() following bug() call(s) is nice, but not required");
|
|
return 0;
|
|
}
|
|
|
|
static int ut_009bug_BUG(int argc, const char **argv)
|
|
{
|
|
bug("a bug message");
|
|
bug("another bug message");
|
|
/* The BUG_if_bug(...) isn't here, but we'll spot bug() calls on exit()! */
|
|
return 0;
|
|
}
|
|
|
|
static int ut_010bug_BUG(int argc, const char **argv)
|
|
{
|
|
bug("a bug message");
|
|
BUG("a BUG message");
|
|
}
|
|
|
|
/*
|
|
* Usage:
|
|
* test-tool trace2 <ut_name_1> <ut_usage_1>
|
|
* test-tool trace2 <ut_name_2> <ut_usage_2>
|
|
* ...
|
|
*/
|
|
#define USAGE_PREFIX "test-tool trace2"
|
|
|
|
/* clang-format off */
|
|
static struct unit_test ut_table[] = {
|
|
{ ut_001return, "001return", "<exit_code>" },
|
|
{ ut_002exit, "002exit", "<exit_code>" },
|
|
{ ut_003error, "003error", "<error_message>+" },
|
|
{ ut_004child, "004child", "[<child_command_line>]" },
|
|
{ ut_005exec, "005exec", "<git_command_args>" },
|
|
{ ut_006data, "006data", "[<category> <key> <value>]+" },
|
|
{ ut_007BUG, "007bug", "" },
|
|
{ ut_008bug, "008bug", "" },
|
|
{ ut_009bug_BUG, "009bug_BUG","" },
|
|
{ ut_010bug_BUG, "010bug_BUG","" },
|
|
};
|
|
/* clang-format on */
|
|
|
|
/* clang-format off */
|
|
#define for_each_ut(k, ut_k) \
|
|
for (k = 0, ut_k = &ut_table[k]; \
|
|
k < ARRAY_SIZE(ut_table); \
|
|
k++, ut_k = &ut_table[k])
|
|
/* clang-format on */
|
|
|
|
static int print_usage(void)
|
|
{
|
|
int k;
|
|
struct unit_test *ut_k;
|
|
|
|
fprintf(stderr, "usage:\n");
|
|
for_each_ut (k, ut_k)
|
|
fprintf(stderr, "\t%s %s %s\n", USAGE_PREFIX, ut_k->ut_name,
|
|
ut_k->ut_usage);
|
|
|
|
return 129;
|
|
}
|
|
|
|
/*
|
|
* Issue various trace2 events for testing.
|
|
*
|
|
* We assume that these trace2 routines has already been called:
|
|
* [] trace2_initialize() [common-main.c:main()]
|
|
* [] trace2_cmd_start() [common-main.c:main()]
|
|
* [] trace2_cmd_name() [test-tool.c:cmd_main()]
|
|
* [] tracd2_cmd_list_config() [test-tool.c:cmd_main()]
|
|
* So that:
|
|
* [] the various trace2 streams are open.
|
|
* [] the process SID has been created.
|
|
* [] the "version" event has been generated.
|
|
* [] the "start" event has been generated.
|
|
* [] the "cmd_name" event has been generated.
|
|
* [] this writes various "def_param" events for interesting config values.
|
|
*
|
|
* We return from here and let test-tool.c::cmd_main() pass the exit
|
|
* code to common-main.c::main(), which will use it to call
|
|
* trace2_cmd_exit().
|
|
*/
|
|
int cmd__trace2(int argc, const char **argv)
|
|
{
|
|
int k;
|
|
struct unit_test *ut_k;
|
|
|
|
argc--; /* skip over "trace2" arg */
|
|
argv++;
|
|
|
|
if (argc)
|
|
for_each_ut (k, ut_k)
|
|
if (!strcmp(argv[0], ut_k->ut_name))
|
|
return ut_k->ut_fn(argc - 1, argv + 1);
|
|
|
|
return print_usage();
|
|
}
|