git-commit-vandalism/pack-bitmap.c
Vicent Marti 7cc8f97108 pack-objects: implement bitmap writing
This commit extends more the functionality of `pack-objects` by allowing
it to write out a `.bitmap` index next to any written packs, together
with the `.idx` index that currently gets written.

If bitmap writing is enabled for a given repository (either by calling
`pack-objects` with the `--write-bitmap-index` flag or by having
`pack.writebitmaps` set to `true` in the config) and pack-objects is
writing a packfile that would normally be indexed (i.e. not piping to
stdout), we will attempt to write the corresponding bitmap index for the
packfile.

Bitmap index writing happens after the packfile and its index has been
successfully written to disk (`finish_tmp_packfile`). The process is
performed in several steps:

    1. `bitmap_writer_set_checksum`: this call stores the partial
       checksum for the packfile being written; the checksum will be
       written in the resulting bitmap index to verify its integrity

    2. `bitmap_writer_build_type_index`: this call uses the array of
       `struct object_entry` that has just been sorted when writing out
       the actual packfile index to disk to generate 4 type-index bitmaps
       (one for each object type).

       These bitmaps have their nth bit set if the given object is of
       the bitmap's type. E.g. the nth bit of the Commits bitmap will be
       1 if the nth object in the packfile index is a commit.

       This is a very cheap operation because the bitmap writing code has
       access to the metadata stored in the `struct object_entry` array,
       and hence the real type for each object in the packfile.

    3. `bitmap_writer_reuse_bitmaps`: if there exists an existing bitmap
       index for one of the packfiles we're trying to repack, this call
       will efficiently rebuild the existing bitmaps so they can be
       reused on the new index. All the existing bitmaps will be stored
       in a `reuse` hash table, and the commit selection phase will
       prioritize these when selecting, as they can be written directly
       to the new index without having to perform a revision walk to
       fill the bitmap. This can greatly speed up the repack of a
       repository that already has bitmaps.

    4. `bitmap_writer_select_commits`: if bitmap writing is enabled for
       a given `pack-objects` run, the sequence of commits generated
       during the Counting Objects phase will be stored in an array.

       We then use that array to build up the list of selected commits.
       Writing a bitmap in the index for each object in the repository
       would be cost-prohibitive, so we use a simple heuristic to pick
       the commits that will be indexed with bitmaps.

       The current heuristics are a simplified version of JGit's
       original implementation. We select a higher density of commits
       depending on their age: the 100 most recent commits are always
       selected, after that we pick 1 commit of each 100, and the gap
       increases as the commits grow older. On top of that, we make sure
       that every single branch that has not been merged (all the tips
       that would be required from a clone) gets their own bitmap, and
       when selecting commits between a gap, we tend to prioritize the
       commit with the most parents.

       Do note that there is no right/wrong way to perform commit
       selection; different selection algorithms will result in
       different commits being selected, but there's no such thing as
       "missing a commit". The bitmap walker algorithm implemented in
       `prepare_bitmap_walk` is able to adapt to missing bitmaps by
       performing manual walks that complete the bitmap: the ideal
       selection algorithm, however, would select the commits that are
       more likely to be used as roots for a walk in the future (e.g.
       the tips of each branch, and so on) to ensure a bitmap for them
       is always available.

    5. `bitmap_writer_build`: this is the computationally expensive part
       of bitmap generation. Based on the list of commits that were
       selected in the previous step, we perform several incremental
       walks to generate the bitmap for each commit.

       The walks begin from the oldest commit, and are built up
       incrementally for each branch. E.g. consider this dag where A, B,
       C, D, E, F are the selected commits, and a, b, c, e are a chunk
       of simplified history that will not receive bitmaps.

            A---a---B--b--C--c--D
                     \
                      E--e--F

       We start by building the bitmap for A, using A as the root for a
       revision walk and marking all the objects that are reachable
       until the walk is over. Once this bitmap is stored, we reuse the
       bitmap walker to perform the walk for B, assuming that once we
       reach A again, the walk will be terminated because A has already
       been SEEN on the previous walk.

       This process is repeated for C, and D, but when we try to
       generate the bitmaps for E, we can reuse neither the current walk
       nor the bitmap we have generated so far.

       What we do now is resetting both the walk and clearing the
       bitmap, and performing the walk from scratch using E as the
       origin. This new walk, however, does not need to be completed.
       Once we hit B, we can lookup the bitmap we have already stored
       for that commit and OR it with the existing bitmap we've composed
       so far, allowing us to limit the walk early.

       After all the bitmaps have been generated, another iteration
       through the list of commits is performed to find the best XOR
       offsets for compression before writing them to disk. Because of
       the incremental nature of these bitmaps, XORing one of them with
       its predecesor results in a minimal "bitmap delta" most of the
       time. We can write this delta to the on-disk bitmap index, and
       then re-compose the original bitmaps by XORing them again when
       loaded.

       This is a phase very similar to pack-object's `find_delta` (using
       bitmaps instead of objects, of course), except the heuristics
       have been greatly simplified: we only check the 10 bitmaps before
       any given one to find best compressing one. This gives good
       results in practice, because there is locality in the ordering of
       the objects (and therefore bitmaps) in the packfile.

     6. `bitmap_writer_finish`: the last step in the process is
	serializing to disk all the bitmap data that has been generated
	in the two previous steps.

	The bitmap is written to a tmp file and then moved atomically to
	its final destination, using the same process as
	`pack-write.c:write_idx_file`.

Signed-off-by: Vicent Marti <tanoku@gmail.com>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-12-30 12:19:22 -08:00

1063 lines
25 KiB
C

#include "cache.h"
#include "commit.h"
#include "tag.h"
#include "diff.h"
#include "revision.h"
#include "progress.h"
#include "list-objects.h"
#include "pack.h"
#include "pack-bitmap.h"
#include "pack-revindex.h"
#include "pack-objects.h"
/*
* An entry on the bitmap index, representing the bitmap for a given
* commit.
*/
struct stored_bitmap {
unsigned char sha1[20];
struct ewah_bitmap *root;
struct stored_bitmap *xor;
int flags;
};
/*
* The currently active bitmap index. By design, repositories only have
* a single bitmap index available (the index for the biggest packfile in
* the repository), since bitmap indexes need full closure.
*
* If there is more than one bitmap index available (e.g. because of alternates),
* the active bitmap index is the largest one.
*/
static struct bitmap_index {
/* Packfile to which this bitmap index belongs to */
struct packed_git *pack;
/* reverse index for the packfile */
struct pack_revindex *reverse_index;
/*
* Mark the first `reuse_objects` in the packfile as reused:
* they will be sent as-is without using them for repacking
* calculations
*/
uint32_t reuse_objects;
/* mmapped buffer of the whole bitmap index */
unsigned char *map;
size_t map_size; /* size of the mmaped buffer */
size_t map_pos; /* current position when loading the index */
/*
* Type indexes.
*
* Each bitmap marks which objects in the packfile are of the given
* type. This provides type information when yielding the objects from
* the packfile during a walk, which allows for better delta bases.
*/
struct ewah_bitmap *commits;
struct ewah_bitmap *trees;
struct ewah_bitmap *blobs;
struct ewah_bitmap *tags;
/* Map from SHA1 -> `stored_bitmap` for all the bitmapped comits */
khash_sha1 *bitmaps;
/* Number of bitmapped commits */
uint32_t entry_count;
/*
* Extended index.
*
* When trying to perform bitmap operations with objects that are not
* packed in `pack`, these objects are added to this "fake index" and
* are assumed to appear at the end of the packfile for all operations
*/
struct eindex {
struct object **objects;
uint32_t *hashes;
uint32_t count, alloc;
khash_sha1_pos *positions;
} ext_index;
/* Bitmap result of the last performed walk */
struct bitmap *result;
/* Version of the bitmap index */
unsigned int version;
unsigned loaded : 1;
} bitmap_git;
static struct ewah_bitmap *lookup_stored_bitmap(struct stored_bitmap *st)
{
struct ewah_bitmap *parent;
struct ewah_bitmap *composed;
if (st->xor == NULL)
return st->root;
composed = ewah_pool_new();
parent = lookup_stored_bitmap(st->xor);
ewah_xor(st->root, parent, composed);
ewah_pool_free(st->root);
st->root = composed;
st->xor = NULL;
return composed;
}
/*
* Read a bitmap from the current read position on the mmaped
* index, and increase the read position accordingly
*/
static struct ewah_bitmap *read_bitmap_1(struct bitmap_index *index)
{
struct ewah_bitmap *b = ewah_pool_new();
int bitmap_size = ewah_read_mmap(b,
index->map + index->map_pos,
index->map_size - index->map_pos);
if (bitmap_size < 0) {
error("Failed to load bitmap index (corrupted?)");
ewah_pool_free(b);
return NULL;
}
index->map_pos += bitmap_size;
return b;
}
static int load_bitmap_header(struct bitmap_index *index)
{
struct bitmap_disk_header *header = (void *)index->map;
if (index->map_size < sizeof(*header) + 20)
return error("Corrupted bitmap index (missing header data)");
if (memcmp(header->magic, BITMAP_IDX_SIGNATURE, sizeof(BITMAP_IDX_SIGNATURE)) != 0)
return error("Corrupted bitmap index file (wrong header)");
index->version = ntohs(header->version);
if (index->version != 1)
return error("Unsupported version for bitmap index file (%d)", index->version);
/* Parse known bitmap format options */
{
uint32_t flags = ntohs(header->options);
if ((flags & BITMAP_OPT_FULL_DAG) == 0)
return error("Unsupported options for bitmap index file "
"(Git requires BITMAP_OPT_FULL_DAG)");
}
index->entry_count = ntohl(header->entry_count);
index->map_pos += sizeof(*header);
return 0;
}
static struct stored_bitmap *store_bitmap(struct bitmap_index *index,
struct ewah_bitmap *root,
const unsigned char *sha1,
struct stored_bitmap *xor_with,
int flags)
{
struct stored_bitmap *stored;
khiter_t hash_pos;
int ret;
stored = xmalloc(sizeof(struct stored_bitmap));
stored->root = root;
stored->xor = xor_with;
stored->flags = flags;
hashcpy(stored->sha1, sha1);
hash_pos = kh_put_sha1(index->bitmaps, stored->sha1, &ret);
/* a 0 return code means the insertion succeeded with no changes,
* because the SHA1 already existed on the map. this is bad, there
* shouldn't be duplicated commits in the index */
if (ret == 0) {
error("Duplicate entry in bitmap index: %s", sha1_to_hex(sha1));
return NULL;
}
kh_value(index->bitmaps, hash_pos) = stored;
return stored;
}
static int load_bitmap_entries_v1(struct bitmap_index *index)
{
static const size_t MAX_XOR_OFFSET = 160;
uint32_t i;
struct stored_bitmap **recent_bitmaps;
struct bitmap_disk_entry *entry;
recent_bitmaps = xcalloc(MAX_XOR_OFFSET, sizeof(struct stored_bitmap));
for (i = 0; i < index->entry_count; ++i) {
int xor_offset, flags;
struct ewah_bitmap *bitmap = NULL;
struct stored_bitmap *xor_bitmap = NULL;
uint32_t commit_idx_pos;
const unsigned char *sha1;
entry = (struct bitmap_disk_entry *)(index->map + index->map_pos);
index->map_pos += sizeof(struct bitmap_disk_entry);
commit_idx_pos = ntohl(entry->object_pos);
sha1 = nth_packed_object_sha1(index->pack, commit_idx_pos);
xor_offset = (int)entry->xor_offset;
flags = (int)entry->flags;
bitmap = read_bitmap_1(index);
if (!bitmap)
return -1;
if (xor_offset > MAX_XOR_OFFSET || xor_offset > i)
return error("Corrupted bitmap pack index");
if (xor_offset > 0) {
xor_bitmap = recent_bitmaps[(i - xor_offset) % MAX_XOR_OFFSET];
if (xor_bitmap == NULL)
return error("Invalid XOR offset in bitmap pack index");
}
recent_bitmaps[i % MAX_XOR_OFFSET] = store_bitmap(
index, bitmap, sha1, xor_bitmap, flags);
}
return 0;
}
static int open_pack_bitmap_1(struct packed_git *packfile)
{
int fd;
struct stat st;
char *idx_name;
if (open_pack_index(packfile))
return -1;
idx_name = pack_bitmap_filename(packfile);
fd = git_open_noatime(idx_name);
free(idx_name);
if (fd < 0)
return -1;
if (fstat(fd, &st)) {
close(fd);
return -1;
}
if (bitmap_git.pack) {
warning("ignoring extra bitmap file: %s", packfile->pack_name);
close(fd);
return -1;
}
bitmap_git.pack = packfile;
bitmap_git.map_size = xsize_t(st.st_size);
bitmap_git.map = xmmap(NULL, bitmap_git.map_size, PROT_READ, MAP_PRIVATE, fd, 0);
bitmap_git.map_pos = 0;
close(fd);
if (load_bitmap_header(&bitmap_git) < 0) {
munmap(bitmap_git.map, bitmap_git.map_size);
bitmap_git.map = NULL;
bitmap_git.map_size = 0;
return -1;
}
return 0;
}
static int load_pack_bitmap(void)
{
assert(bitmap_git.map && !bitmap_git.loaded);
bitmap_git.bitmaps = kh_init_sha1();
bitmap_git.ext_index.positions = kh_init_sha1_pos();
bitmap_git.reverse_index = revindex_for_pack(bitmap_git.pack);
if (!(bitmap_git.commits = read_bitmap_1(&bitmap_git)) ||
!(bitmap_git.trees = read_bitmap_1(&bitmap_git)) ||
!(bitmap_git.blobs = read_bitmap_1(&bitmap_git)) ||
!(bitmap_git.tags = read_bitmap_1(&bitmap_git)))
goto failed;
if (load_bitmap_entries_v1(&bitmap_git) < 0)
goto failed;
bitmap_git.loaded = 1;
return 0;
failed:
munmap(bitmap_git.map, bitmap_git.map_size);
bitmap_git.map = NULL;
bitmap_git.map_size = 0;
return -1;
}
char *pack_bitmap_filename(struct packed_git *p)
{
char *idx_name;
int len;
len = strlen(p->pack_name) - strlen(".pack");
idx_name = xmalloc(len + strlen(".bitmap") + 1);
memcpy(idx_name, p->pack_name, len);
memcpy(idx_name + len, ".bitmap", strlen(".bitmap") + 1);
return idx_name;
}
static int open_pack_bitmap(void)
{
struct packed_git *p;
int ret = -1;
assert(!bitmap_git.map && !bitmap_git.loaded);
prepare_packed_git();
for (p = packed_git; p; p = p->next) {
if (open_pack_bitmap_1(p) == 0)
ret = 0;
}
return ret;
}
int prepare_bitmap_git(void)
{
if (bitmap_git.loaded)
return 0;
if (!open_pack_bitmap())
return load_pack_bitmap();
return -1;
}
struct include_data {
struct bitmap *base;
struct bitmap *seen;
};
static inline int bitmap_position_extended(const unsigned char *sha1)
{
khash_sha1_pos *positions = bitmap_git.ext_index.positions;
khiter_t pos = kh_get_sha1_pos(positions, sha1);
if (pos < kh_end(positions)) {
int bitmap_pos = kh_value(positions, pos);
return bitmap_pos + bitmap_git.pack->num_objects;
}
return -1;
}
static inline int bitmap_position_packfile(const unsigned char *sha1)
{
off_t offset = find_pack_entry_one(sha1, bitmap_git.pack);
if (!offset)
return -1;
return find_revindex_position(bitmap_git.reverse_index, offset);
}
static int bitmap_position(const unsigned char *sha1)
{
int pos = bitmap_position_packfile(sha1);
return (pos >= 0) ? pos : bitmap_position_extended(sha1);
}
static int ext_index_add_object(struct object *object, const char *name)
{
struct eindex *eindex = &bitmap_git.ext_index;
khiter_t hash_pos;
int hash_ret;
int bitmap_pos;
hash_pos = kh_put_sha1_pos(eindex->positions, object->sha1, &hash_ret);
if (hash_ret > 0) {
if (eindex->count >= eindex->alloc) {
eindex->alloc = (eindex->alloc + 16) * 3 / 2;
eindex->objects = xrealloc(eindex->objects,
eindex->alloc * sizeof(struct object *));
eindex->hashes = xrealloc(eindex->hashes,
eindex->alloc * sizeof(uint32_t));
}
bitmap_pos = eindex->count;
eindex->objects[eindex->count] = object;
eindex->hashes[eindex->count] = pack_name_hash(name);
kh_value(eindex->positions, hash_pos) = bitmap_pos;
eindex->count++;
} else {
bitmap_pos = kh_value(eindex->positions, hash_pos);
}
return bitmap_pos + bitmap_git.pack->num_objects;
}
static void show_object(struct object *object, const struct name_path *path,
const char *last, void *data)
{
struct bitmap *base = data;
int bitmap_pos;
bitmap_pos = bitmap_position(object->sha1);
if (bitmap_pos < 0) {
char *name = path_name(path, last);
bitmap_pos = ext_index_add_object(object, name);
free(name);
}
bitmap_set(base, bitmap_pos);
}
static void show_commit(struct commit *commit, void *data)
{
}
static int add_to_include_set(struct include_data *data,
const unsigned char *sha1,
int bitmap_pos)
{
khiter_t hash_pos;
if (data->seen && bitmap_get(data->seen, bitmap_pos))
return 0;
if (bitmap_get(data->base, bitmap_pos))
return 0;
hash_pos = kh_get_sha1(bitmap_git.bitmaps, sha1);
if (hash_pos < kh_end(bitmap_git.bitmaps)) {
struct stored_bitmap *st = kh_value(bitmap_git.bitmaps, hash_pos);
bitmap_or_ewah(data->base, lookup_stored_bitmap(st));
return 0;
}
bitmap_set(data->base, bitmap_pos);
return 1;
}
static int should_include(struct commit *commit, void *_data)
{
struct include_data *data = _data;
int bitmap_pos;
bitmap_pos = bitmap_position(commit->object.sha1);
if (bitmap_pos < 0)
bitmap_pos = ext_index_add_object((struct object *)commit, NULL);
if (!add_to_include_set(data, commit->object.sha1, bitmap_pos)) {
struct commit_list *parent = commit->parents;
while (parent) {
parent->item->object.flags |= SEEN;
parent = parent->next;
}
return 0;
}
return 1;
}
static struct bitmap *find_objects(struct rev_info *revs,
struct object_list *roots,
struct bitmap *seen)
{
struct bitmap *base = NULL;
int needs_walk = 0;
struct object_list *not_mapped = NULL;
/*
* Go through all the roots for the walk. The ones that have bitmaps
* on the bitmap index will be `or`ed together to form an initial
* global reachability analysis.
*
* The ones without bitmaps in the index will be stored in the
* `not_mapped_list` for further processing.
*/
while (roots) {
struct object *object = roots->item;
roots = roots->next;
if (object->type == OBJ_COMMIT) {
khiter_t pos = kh_get_sha1(bitmap_git.bitmaps, object->sha1);
if (pos < kh_end(bitmap_git.bitmaps)) {
struct stored_bitmap *st = kh_value(bitmap_git.bitmaps, pos);
struct ewah_bitmap *or_with = lookup_stored_bitmap(st);
if (base == NULL)
base = ewah_to_bitmap(or_with);
else
bitmap_or_ewah(base, or_with);
object->flags |= SEEN;
continue;
}
}
object_list_insert(object, &not_mapped);
}
/*
* Best case scenario: We found bitmaps for all the roots,
* so the resulting `or` bitmap has the full reachability analysis
*/
if (not_mapped == NULL)
return base;
roots = not_mapped;
/*
* Let's iterate through all the roots that don't have bitmaps to
* check if we can determine them to be reachable from the existing
* global bitmap.
*
* If we cannot find them in the existing global bitmap, we'll need
* to push them to an actual walk and run it until we can confirm
* they are reachable
*/
while (roots) {
struct object *object = roots->item;
int pos;
roots = roots->next;
pos = bitmap_position(object->sha1);
if (pos < 0 || base == NULL || !bitmap_get(base, pos)) {
object->flags &= ~UNINTERESTING;
add_pending_object(revs, object, "");
needs_walk = 1;
} else {
object->flags |= SEEN;
}
}
if (needs_walk) {
struct include_data incdata;
if (base == NULL)
base = bitmap_new();
incdata.base = base;
incdata.seen = seen;
revs->include_check = should_include;
revs->include_check_data = &incdata;
if (prepare_revision_walk(revs))
die("revision walk setup failed");
traverse_commit_list(revs, show_commit, show_object, base);
}
return base;
}
static void show_extended_objects(struct bitmap *objects,
show_reachable_fn show_reach)
{
struct eindex *eindex = &bitmap_git.ext_index;
uint32_t i;
for (i = 0; i < eindex->count; ++i) {
struct object *obj;
if (!bitmap_get(objects, bitmap_git.pack->num_objects + i))
continue;
obj = eindex->objects[i];
show_reach(obj->sha1, obj->type, 0, eindex->hashes[i], NULL, 0);
}
}
static void show_objects_for_type(
struct bitmap *objects,
struct ewah_bitmap *type_filter,
enum object_type object_type,
show_reachable_fn show_reach)
{
size_t pos = 0, i = 0;
uint32_t offset;
struct ewah_iterator it;
eword_t filter;
if (bitmap_git.reuse_objects == bitmap_git.pack->num_objects)
return;
ewah_iterator_init(&it, type_filter);
while (i < objects->word_alloc && ewah_iterator_next(&filter, &it)) {
eword_t word = objects->words[i] & filter;
for (offset = 0; offset < BITS_IN_WORD; ++offset) {
const unsigned char *sha1;
struct revindex_entry *entry;
uint32_t hash = 0;
if ((word >> offset) == 0)
break;
offset += ewah_bit_ctz64(word >> offset);
if (pos + offset < bitmap_git.reuse_objects)
continue;
entry = &bitmap_git.reverse_index->revindex[pos + offset];
sha1 = nth_packed_object_sha1(bitmap_git.pack, entry->nr);
show_reach(sha1, object_type, 0, hash, bitmap_git.pack, entry->offset);
}
pos += BITS_IN_WORD;
i++;
}
}
static int in_bitmapped_pack(struct object_list *roots)
{
while (roots) {
struct object *object = roots->item;
roots = roots->next;
if (find_pack_entry_one(object->sha1, bitmap_git.pack) > 0)
return 1;
}
return 0;
}
int prepare_bitmap_walk(struct rev_info *revs)
{
unsigned int i;
unsigned int pending_nr = revs->pending.nr;
struct object_array_entry *pending_e = revs->pending.objects;
struct object_list *wants = NULL;
struct object_list *haves = NULL;
struct bitmap *wants_bitmap = NULL;
struct bitmap *haves_bitmap = NULL;
if (!bitmap_git.loaded) {
/* try to open a bitmapped pack, but don't parse it yet
* because we may not need to use it */
if (open_pack_bitmap() < 0)
return -1;
}
for (i = 0; i < pending_nr; ++i) {
struct object *object = pending_e[i].item;
if (object->type == OBJ_NONE)
parse_object_or_die(object->sha1, NULL);
while (object->type == OBJ_TAG) {
struct tag *tag = (struct tag *) object;
if (object->flags & UNINTERESTING)
object_list_insert(object, &haves);
else
object_list_insert(object, &wants);
if (!tag->tagged)
die("bad tag");
object = parse_object_or_die(tag->tagged->sha1, NULL);
}
if (object->flags & UNINTERESTING)
object_list_insert(object, &haves);
else
object_list_insert(object, &wants);
}
/*
* if we have a HAVES list, but none of those haves is contained
* in the packfile that has a bitmap, we don't have anything to
* optimize here
*/
if (haves && !in_bitmapped_pack(haves))
return -1;
/* if we don't want anything, we're done here */
if (!wants)
return -1;
/*
* now we're going to use bitmaps, so load the actual bitmap entries
* from disk. this is the point of no return; after this the rev_list
* becomes invalidated and we must perform the revwalk through bitmaps
*/
if (!bitmap_git.loaded && load_pack_bitmap() < 0)
return -1;
revs->pending.nr = 0;
revs->pending.alloc = 0;
revs->pending.objects = NULL;
if (haves) {
haves_bitmap = find_objects(revs, haves, NULL);
reset_revision_walk();
if (haves_bitmap == NULL)
die("BUG: failed to perform bitmap walk");
}
wants_bitmap = find_objects(revs, wants, haves_bitmap);
if (!wants_bitmap)
die("BUG: failed to perform bitmap walk");
if (haves_bitmap)
bitmap_and_not(wants_bitmap, haves_bitmap);
bitmap_git.result = wants_bitmap;
bitmap_free(haves_bitmap);
return 0;
}
int reuse_partial_packfile_from_bitmap(struct packed_git **packfile,
uint32_t *entries,
off_t *up_to)
{
/*
* Reuse the packfile content if we need more than
* 90% of its objects
*/
static const double REUSE_PERCENT = 0.9;
struct bitmap *result = bitmap_git.result;
uint32_t reuse_threshold;
uint32_t i, reuse_objects = 0;
assert(result);
for (i = 0; i < result->word_alloc; ++i) {
if (result->words[i] != (eword_t)~0) {
reuse_objects += ewah_bit_ctz64(~result->words[i]);
break;
}
reuse_objects += BITS_IN_WORD;
}
#ifdef GIT_BITMAP_DEBUG
{
const unsigned char *sha1;
struct revindex_entry *entry;
entry = &bitmap_git.reverse_index->revindex[reuse_objects];
sha1 = nth_packed_object_sha1(bitmap_git.pack, entry->nr);
fprintf(stderr, "Failed to reuse at %d (%016llx)\n",
reuse_objects, result->words[i]);
fprintf(stderr, " %s\n", sha1_to_hex(sha1));
}
#endif
if (!reuse_objects)
return -1;
if (reuse_objects >= bitmap_git.pack->num_objects) {
bitmap_git.reuse_objects = *entries = bitmap_git.pack->num_objects;
*up_to = -1; /* reuse the full pack */
*packfile = bitmap_git.pack;
return 0;
}
reuse_threshold = bitmap_popcount(bitmap_git.result) * REUSE_PERCENT;
if (reuse_objects < reuse_threshold)
return -1;
bitmap_git.reuse_objects = *entries = reuse_objects;
*up_to = bitmap_git.reverse_index->revindex[reuse_objects].offset;
*packfile = bitmap_git.pack;
return 0;
}
void traverse_bitmap_commit_list(show_reachable_fn show_reachable)
{
assert(bitmap_git.result);
show_objects_for_type(bitmap_git.result, bitmap_git.commits,
OBJ_COMMIT, show_reachable);
show_objects_for_type(bitmap_git.result, bitmap_git.trees,
OBJ_TREE, show_reachable);
show_objects_for_type(bitmap_git.result, bitmap_git.blobs,
OBJ_BLOB, show_reachable);
show_objects_for_type(bitmap_git.result, bitmap_git.tags,
OBJ_TAG, show_reachable);
show_extended_objects(bitmap_git.result, show_reachable);
bitmap_free(bitmap_git.result);
bitmap_git.result = NULL;
}
static uint32_t count_object_type(struct bitmap *objects,
enum object_type type)
{
struct eindex *eindex = &bitmap_git.ext_index;
uint32_t i = 0, count = 0;
struct ewah_iterator it;
eword_t filter;
switch (type) {
case OBJ_COMMIT:
ewah_iterator_init(&it, bitmap_git.commits);
break;
case OBJ_TREE:
ewah_iterator_init(&it, bitmap_git.trees);
break;
case OBJ_BLOB:
ewah_iterator_init(&it, bitmap_git.blobs);
break;
case OBJ_TAG:
ewah_iterator_init(&it, bitmap_git.tags);
break;
default:
return 0;
}
while (i < objects->word_alloc && ewah_iterator_next(&filter, &it)) {
eword_t word = objects->words[i++] & filter;
count += ewah_bit_popcount64(word);
}
for (i = 0; i < eindex->count; ++i) {
if (eindex->objects[i]->type == type &&
bitmap_get(objects, bitmap_git.pack->num_objects + i))
count++;
}
return count;
}
void count_bitmap_commit_list(uint32_t *commits, uint32_t *trees,
uint32_t *blobs, uint32_t *tags)
{
assert(bitmap_git.result);
if (commits)
*commits = count_object_type(bitmap_git.result, OBJ_COMMIT);
if (trees)
*trees = count_object_type(bitmap_git.result, OBJ_TREE);
if (blobs)
*blobs = count_object_type(bitmap_git.result, OBJ_BLOB);
if (tags)
*tags = count_object_type(bitmap_git.result, OBJ_TAG);
}
struct bitmap_test_data {
struct bitmap *base;
struct progress *prg;
size_t seen;
};
static void test_show_object(struct object *object,
const struct name_path *path,
const char *last, void *data)
{
struct bitmap_test_data *tdata = data;
int bitmap_pos;
bitmap_pos = bitmap_position(object->sha1);
if (bitmap_pos < 0)
die("Object not in bitmap: %s\n", sha1_to_hex(object->sha1));
bitmap_set(tdata->base, bitmap_pos);
display_progress(tdata->prg, ++tdata->seen);
}
static void test_show_commit(struct commit *commit, void *data)
{
struct bitmap_test_data *tdata = data;
int bitmap_pos;
bitmap_pos = bitmap_position(commit->object.sha1);
if (bitmap_pos < 0)
die("Object not in bitmap: %s\n", sha1_to_hex(commit->object.sha1));
bitmap_set(tdata->base, bitmap_pos);
display_progress(tdata->prg, ++tdata->seen);
}
void test_bitmap_walk(struct rev_info *revs)
{
struct object *root;
struct bitmap *result = NULL;
khiter_t pos;
size_t result_popcnt;
struct bitmap_test_data tdata;
if (prepare_bitmap_git())
die("failed to load bitmap indexes");
if (revs->pending.nr != 1)
die("you must specify exactly one commit to test");
fprintf(stderr, "Bitmap v%d test (%d entries loaded)\n",
bitmap_git.version, bitmap_git.entry_count);
root = revs->pending.objects[0].item;
pos = kh_get_sha1(bitmap_git.bitmaps, root->sha1);
if (pos < kh_end(bitmap_git.bitmaps)) {
struct stored_bitmap *st = kh_value(bitmap_git.bitmaps, pos);
struct ewah_bitmap *bm = lookup_stored_bitmap(st);
fprintf(stderr, "Found bitmap for %s. %d bits / %08x checksum\n",
sha1_to_hex(root->sha1), (int)bm->bit_size, ewah_checksum(bm));
result = ewah_to_bitmap(bm);
}
if (result == NULL)
die("Commit %s doesn't have an indexed bitmap", sha1_to_hex(root->sha1));
revs->tag_objects = 1;
revs->tree_objects = 1;
revs->blob_objects = 1;
result_popcnt = bitmap_popcount(result);
if (prepare_revision_walk(revs))
die("revision walk setup failed");
tdata.base = bitmap_new();
tdata.prg = start_progress("Verifying bitmap entries", result_popcnt);
tdata.seen = 0;
traverse_commit_list(revs, &test_show_commit, &test_show_object, &tdata);
stop_progress(&tdata.prg);
if (bitmap_equals(result, tdata.base))
fprintf(stderr, "OK!\n");
else
fprintf(stderr, "Mismatch!\n");
}
static int rebuild_bitmap(uint32_t *reposition,
struct ewah_bitmap *source,
struct bitmap *dest)
{
uint32_t pos = 0;
struct ewah_iterator it;
eword_t word;
ewah_iterator_init(&it, source);
while (ewah_iterator_next(&word, &it)) {
uint32_t offset, bit_pos;
for (offset = 0; offset < BITS_IN_WORD; ++offset) {
if ((word >> offset) == 0)
break;
offset += ewah_bit_ctz64(word >> offset);
bit_pos = reposition[pos + offset];
if (bit_pos > 0)
bitmap_set(dest, bit_pos - 1);
else /* can't reuse, we don't have the object */
return -1;
}
pos += BITS_IN_WORD;
}
return 0;
}
int rebuild_existing_bitmaps(struct packing_data *mapping,
khash_sha1 *reused_bitmaps,
int show_progress)
{
uint32_t i, num_objects;
uint32_t *reposition;
struct bitmap *rebuild;
struct stored_bitmap *stored;
struct progress *progress = NULL;
khiter_t hash_pos;
int hash_ret;
if (prepare_bitmap_git() < 0)
return -1;
num_objects = bitmap_git.pack->num_objects;
reposition = xcalloc(num_objects, sizeof(uint32_t));
for (i = 0; i < num_objects; ++i) {
const unsigned char *sha1;
struct revindex_entry *entry;
struct object_entry *oe;
entry = &bitmap_git.reverse_index->revindex[i];
sha1 = nth_packed_object_sha1(bitmap_git.pack, entry->nr);
oe = packlist_find(mapping, sha1, NULL);
if (oe)
reposition[i] = oe->in_pack_pos + 1;
}
rebuild = bitmap_new();
i = 0;
if (show_progress)
progress = start_progress("Reusing bitmaps", 0);
kh_foreach_value(bitmap_git.bitmaps, stored, {
if (stored->flags & BITMAP_FLAG_REUSE) {
if (!rebuild_bitmap(reposition,
lookup_stored_bitmap(stored),
rebuild)) {
hash_pos = kh_put_sha1(reused_bitmaps,
stored->sha1,
&hash_ret);
kh_value(reused_bitmaps, hash_pos) =
bitmap_to_ewah(rebuild);
}
bitmap_reset(rebuild);
display_progress(progress, ++i);
}
});
stop_progress(&progress);
free(reposition);
bitmap_free(rebuild);
return 0;
}