git-commit-vandalism/sha256/block/sha256.c
brian m. carlson 13eeedb5d1 Add a base implementation of SHA-256 support
SHA-1 is weak and we need to transition to a new hash function.  For
some time, we have referred to this new function as NewHash.  Recently,
we decided to pick SHA-256 as NewHash.  The reasons behind the choice of
SHA-256 are outlined in the thread starting at [1] and in the commit
history for the hash function transition document.

Add a basic implementation of SHA-256 based off libtomcrypt, which is in
the public domain.  Optimize it and restructure it to meet our coding
standards.  Pull in the update and final functions from the SHA-1 block
implementation, as we know these function correctly with all compilers.
This implementation is slower than SHA-1, but more performant
implementations will be introduced in future commits.

Wire up SHA-256 in the list of hash algorithms, and add a test that the
algorithm works correctly.

Note that with this patch, it is still not possible to switch to using
SHA-256 in Git.  Additional patches are needed to prepare the code to
handle a larger hash algorithm and further test fixes are needed.

[1] https://public-inbox.org/git/20180609224913.GC38834@genre.crustytoothpaste.net/

Signed-off-by: brian m. carlson <sandals@crustytoothpaste.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-11-14 16:54:53 +09:00

197 lines
6.7 KiB
C

#include "git-compat-util.h"
#include "./sha256.h"
#undef RND
#undef BLKSIZE
#define BLKSIZE blk_SHA256_BLKSIZE
void blk_SHA256_Init(blk_SHA256_CTX *ctx)
{
ctx->offset = 0;
ctx->size = 0;
ctx->state[0] = 0x6a09e667ul;
ctx->state[1] = 0xbb67ae85ul;
ctx->state[2] = 0x3c6ef372ul;
ctx->state[3] = 0xa54ff53aul;
ctx->state[4] = 0x510e527ful;
ctx->state[5] = 0x9b05688cul;
ctx->state[6] = 0x1f83d9abul;
ctx->state[7] = 0x5be0cd19ul;
}
static inline uint32_t ror(uint32_t x, unsigned n)
{
return (x >> n) | (x << (32 - n));
}
static inline uint32_t ch(uint32_t x, uint32_t y, uint32_t z)
{
return z ^ (x & (y ^ z));
}
static inline uint32_t maj(uint32_t x, uint32_t y, uint32_t z)
{
return ((x | y) & z) | (x & y);
}
static inline uint32_t sigma0(uint32_t x)
{
return ror(x, 2) ^ ror(x, 13) ^ ror(x, 22);
}
static inline uint32_t sigma1(uint32_t x)
{
return ror(x, 6) ^ ror(x, 11) ^ ror(x, 25);
}
static inline uint32_t gamma0(uint32_t x)
{
return ror(x, 7) ^ ror(x, 18) ^ (x >> 3);
}
static inline uint32_t gamma1(uint32_t x)
{
return ror(x, 17) ^ ror(x, 19) ^ (x >> 10);
}
static void blk_SHA256_Transform(blk_SHA256_CTX *ctx, const unsigned char *buf)
{
uint32_t S[8], W[64], t0, t1;
int i;
/* copy state into S */
for (i = 0; i < 8; i++)
S[i] = ctx->state[i];
/* copy the state into 512-bits into W[0..15] */
for (i = 0; i < 16; i++, buf += sizeof(uint32_t))
W[i] = get_be32(buf);
/* fill W[16..63] */
for (i = 16; i < 64; i++)
W[i] = gamma1(W[i - 2]) + W[i - 7] + gamma0(W[i - 15]) + W[i - 16];
#define RND(a,b,c,d,e,f,g,h,i,ki) \
t0 = h + sigma1(e) + ch(e, f, g) + ki + W[i]; \
t1 = sigma0(a) + maj(a, b, c); \
d += t0; \
h = t0 + t1;
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],0,0x428a2f98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],1,0x71374491);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],2,0xb5c0fbcf);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],3,0xe9b5dba5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],4,0x3956c25b);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],5,0x59f111f1);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],6,0x923f82a4);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],7,0xab1c5ed5);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],8,0xd807aa98);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],9,0x12835b01);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],10,0x243185be);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],11,0x550c7dc3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],12,0x72be5d74);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],13,0x80deb1fe);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],14,0x9bdc06a7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],15,0xc19bf174);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],16,0xe49b69c1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],17,0xefbe4786);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],18,0x0fc19dc6);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],19,0x240ca1cc);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],20,0x2de92c6f);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],21,0x4a7484aa);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],22,0x5cb0a9dc);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],23,0x76f988da);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],24,0x983e5152);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],25,0xa831c66d);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],26,0xb00327c8);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],27,0xbf597fc7);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],28,0xc6e00bf3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],29,0xd5a79147);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],30,0x06ca6351);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],31,0x14292967);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],32,0x27b70a85);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],33,0x2e1b2138);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],34,0x4d2c6dfc);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],35,0x53380d13);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],36,0x650a7354);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],37,0x766a0abb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],38,0x81c2c92e);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],39,0x92722c85);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],40,0xa2bfe8a1);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],41,0xa81a664b);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],42,0xc24b8b70);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],43,0xc76c51a3);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],44,0xd192e819);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],45,0xd6990624);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],46,0xf40e3585);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],47,0x106aa070);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],48,0x19a4c116);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],49,0x1e376c08);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],50,0x2748774c);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],51,0x34b0bcb5);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],52,0x391c0cb3);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],53,0x4ed8aa4a);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],54,0x5b9cca4f);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],55,0x682e6ff3);
RND(S[0],S[1],S[2],S[3],S[4],S[5],S[6],S[7],56,0x748f82ee);
RND(S[7],S[0],S[1],S[2],S[3],S[4],S[5],S[6],57,0x78a5636f);
RND(S[6],S[7],S[0],S[1],S[2],S[3],S[4],S[5],58,0x84c87814);
RND(S[5],S[6],S[7],S[0],S[1],S[2],S[3],S[4],59,0x8cc70208);
RND(S[4],S[5],S[6],S[7],S[0],S[1],S[2],S[3],60,0x90befffa);
RND(S[3],S[4],S[5],S[6],S[7],S[0],S[1],S[2],61,0xa4506ceb);
RND(S[2],S[3],S[4],S[5],S[6],S[7],S[0],S[1],62,0xbef9a3f7);
RND(S[1],S[2],S[3],S[4],S[5],S[6],S[7],S[0],63,0xc67178f2);
for (i = 0; i < 8; i++)
ctx->state[i] += S[i];
}
void blk_SHA256_Update(blk_SHA256_CTX *ctx, const void *data, size_t len)
{
unsigned int len_buf = ctx->size & 63;
ctx->size += len;
/* Read the data into buf and process blocks as they get full */
if (len_buf) {
unsigned int left = 64 - len_buf;
if (len < left)
left = len;
memcpy(len_buf + ctx->buf, data, left);
len_buf = (len_buf + left) & 63;
len -= left;
data = ((const char *)data + left);
if (len_buf)
return;
blk_SHA256_Transform(ctx, ctx->buf);
}
while (len >= 64) {
blk_SHA256_Transform(ctx, data);
data = ((const char *)data + 64);
len -= 64;
}
if (len)
memcpy(ctx->buf, data, len);
}
void blk_SHA256_Final(unsigned char *digest, blk_SHA256_CTX *ctx)
{
static const unsigned char pad[64] = { 0x80 };
unsigned int padlen[2];
int i;
/* Pad with a binary 1 (ie 0x80), then zeroes, then length */
padlen[0] = htonl((uint32_t)(ctx->size >> 29));
padlen[1] = htonl((uint32_t)(ctx->size << 3));
i = ctx->size & 63;
blk_SHA256_Update(ctx, pad, 1 + (63 & (55 - i)));
blk_SHA256_Update(ctx, padlen, 8);
/* copy output */
for (i = 0; i < 8; i++, digest += sizeof(uint32_t))
put_be32(digest, ctx->state[i]);
}