git-commit-vandalism/t/perf
Jeff King 0baf78e7bc perf-lib.sh: rely on test-lib.sh for --tee handling
Since its inception, the perf-lib.sh script has manually handled the
"--tee" option (and other options which imply it, like "--valgrind")
with a cut-and-pasted block from test-lib.sh. That block has grown stale
over the years, and has at least three problems:

  1. It uses $SHELL to re-exec the script, whereas the version in
     test-lib.sh learned to use $TEST_SHELL_PATH.

  2. It does an ad-hoc search of the "$*" string, whereas test-lib.sh
     learned to carefully parse the arguments left to right.

  3. It never learned about --verbose-log (which also implies --tee),
     so it would not trigger for that option.

This last one was especially annoying, because t/perf/run uses the
GIT_TEST_OPTS from your config.mak to run the perf scripts. So if you've
set, say, "-x --verbose-log" there, it will be passed as part of most
perf runs. And while this script doesn't recognize the option, the
test-lib.sh that we source _does_, and the behavior ends up being much
more annoying:

  - as the comment at the top of the block says, we have to run this
    tee code early, before we start munging variables (it says
    GIT_BUILD_DIR, but the problematic variable is actually
    GIT_TEST_INSTALLED).

  - since we don't recognize --verbose-log, we don't trigger the block.
    We go on to munge GIT_TEST_INSTALLED, converting it from a relative
    to an absolute path.

  - then we source test-lib.sh, which _does_ recognize --verbose-log. It
    re-execs the script, which runs again. But this time with an
    absolute version of GIT_TEST_INSTALLED.

  - As a result, we copy the absolute version of GIT_TEST_INSTALLED into
    perf_results_prefix. Instead of writing our results to the expected
    "test-results/build_1234abcd.p1234-whatever.times", we instead write
    them to "test-results/_full_path_to_repo_t_perf_build_1234...".

    The aggregate.perl script doesn't expect this, and so it prints
    "<missing>" for each result (even though it spent considerable time
    running the tests!).

We can solve all of these in one blow by just deleting our custom
handling, and relying on the inclusion of test-lib.sh to handle --tee,
--verbose-log, etc.

There's one catch, though. We want to handle GIT_TEST_INSTALLED after
we've included test-lib.sh, since we want it un-munged in the re-exec'd
version of the script. But if we want to convert it from a relative
to an absolute path, we must do so before we load test-lib.sh, since it
will change our working directory. So we compute the absolute directory
first, store it away, then include test-lib.sh, and finally assign to
GIT_TEST_INSTALLED as appropriate.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2019-03-18 14:52:43 +09:00
..
repos p0006-read-tree-checkout: perf test to time read-tree 2017-04-19 20:33:01 -07:00
.gitignore
aggregate.perl t/perf: add infrastructure for measuring sizes 2018-08-20 14:04:47 -07:00
bisect_regression t/perf: add scripts to bisect performance regressions 2018-04-11 15:14:02 +09:00
bisect_run_script perf/bisect_run_script: disable codespeed 2018-05-06 13:04:54 +09:00
lib-pack.sh t/perf/lib-pack: use fast-import checkpoint to create packs 2017-11-21 11:07:28 +09:00
Makefile
min_time.perl
p0000-perf-lib-sanity.sh t/perf: correctly align non-ASCII descriptions in output 2017-04-23 21:33:15 -07:00
p0001-rev-list.sh t/perf: export variable used in other blocks 2017-03-03 10:54:42 -08:00
p0002-read-cache.sh t/helper: merge test-read-cache into test-tool 2018-03-27 08:45:47 -07:00
p0003-delta-base-cache.sh t/perf: add basic perf tests for delta base cache 2016-08-23 15:26:16 -07:00
p0004-lazy-init-name-hash.sh t/helper: merge test-lazy-init-name-hash into test-tool 2018-03-27 08:45:47 -07:00
p0005-status.sh string-list: use ALLOC_GROW macro when reallocing string_list 2017-04-15 02:04:41 -07:00
p0006-read-tree-checkout.sh p0006-read-tree-checkout: perf test to time read-tree 2017-04-19 20:33:01 -07:00
p0007-write-cache.sh t/helper: merge test-write-cache into test-tool 2018-03-27 08:45:47 -07:00
p0071-sort.sh t/helper: merge test-string-list into test-tool 2018-03-27 08:45:47 -07:00
p0100-globbing.sh perf: add test showing exponential growth in path globbing 2017-05-12 10:07:43 +09:00
p1450-fsck.sh fsck: add a performance test 2018-09-12 15:17:46 -07:00
p1451-fsck-skip-list.sh fsck: add a performance test for skipList 2018-09-12 15:17:46 -07:00
p3400-rebase.sh p3400: replace calls to git checkout -b' by git checkout -B' 2018-11-12 16:40:55 +09:00
p3404-rebase-interactive.sh perf: run "rebase -i" under perf 2016-05-13 11:07:12 -07:00
p4000-diff-algorithms.sh
p4001-diff-no-index.sh diff: don't read index when --no-index is given 2013-12-12 12:23:02 -08:00
p4205-log-pretty-formats.sh p4205: add perf test script for pretty log formats 2017-06-24 11:05:02 -07:00
p4211-line-log.sh sha1_file: use strbuf_add() instead of strbuf_addf() 2017-12-04 10:38:55 -08:00
p4220-log-grep-engines.sh perf: add a comparison test of log --grep regex engines 2017-05-26 12:52:37 +09:00
p4221-log-grep-engines-fixed.sh perf: add a comparison test of log --grep regex engines with -F 2017-05-26 12:52:37 +09:00
p5302-pack-index.sh p5302: create repositories for index-pack results explicitly 2017-02-06 10:55:25 -08:00
p5303-many-packs.sh t/perf: add tests for many-pack scenarios 2016-07-29 11:05:06 -07:00
p5304-prune.sh prune: use bitmaps for reachability traversal 2019-02-14 15:25:33 -08:00
p5310-pack-bitmaps.sh pack-objects: use reachability bitmap index when generating non-stdout pack 2016-09-12 13:47:41 -07:00
p5311-pack-bitmaps-fetch.sh t/perf: add perf tests for fetches from a bitmapped server 2018-08-20 14:04:47 -07:00
p5550-fetch-tags.sh p5550: factor out nonsense-pack creation 2017-11-21 11:07:12 +09:00
p5551-fetch-rescan.sh p5551: add a script to test fetch pack-dir rescans 2017-11-21 11:08:20 +09:00
p7000-filter-branch.sh p7000: add test for filter-branch with --prune-empty 2017-03-03 12:43:37 -08:00
p7300-clean.sh resolve_gitlink_ref: ignore non-repository paths 2016-01-25 11:42:13 -08:00
p7519-fsmonitor.sh t/helper: merge test-drop-caches into test-tool 2018-03-27 08:45:47 -07:00
p7810-grep.sh
p7820-grep-engines.sh perf: amend the grep tests to test grep.threads 2018-01-04 10:24:48 -08:00
p7821-grep-engines-fixed.sh perf: amend the grep tests to test grep.threads 2018-01-04 10:24:48 -08:00
perf-lib.sh perf-lib.sh: rely on test-lib.sh for --tee handling 2019-03-18 14:52:43 +09:00
README t/perf: add infrastructure for measuring sizes 2018-08-20 14:04:47 -07:00
run perf/run: add --subsection option 2018-04-11 15:14:00 +09:00

Git performance tests
=====================

This directory holds performance testing scripts for git tools.  The
first part of this document describes the various ways in which you
can run them.

When fixing the tools or adding enhancements, you are strongly
encouraged to add tests in this directory to cover what you are
trying to fix or enhance.  The later part of this short document
describes how your test scripts should be organized.


Running Tests
-------------

The easiest way to run tests is to say "make".  This runs all
the tests on the current git repository.

    === Running 2 tests in this tree ===
    [...]
    Test                                     this tree
    ---------------------------------------------------------
    0001.1: rev-list --all                   0.54(0.51+0.02)
    0001.2: rev-list --all --objects         6.14(5.99+0.11)
    7810.1: grep worktree, cheap regex       0.16(0.16+0.35)
    7810.2: grep worktree, expensive regex   7.90(29.75+0.37)
    7810.3: grep --cached, cheap regex       3.07(3.02+0.25)
    7810.4: grep --cached, expensive regex   9.39(30.57+0.24)

You can compare multiple repositories and even git revisions with the
'run' script:

    $ ./run . origin/next /path/to/git-tree p0001-rev-list.sh

where . stands for the current git tree.  The full invocation is

    ./run [<revision|directory>...] [--] [<test-script>...]

A '.' argument is implied if you do not pass any other
revisions/directories.

You can also manually test this or another git build tree, and then
call the aggregation script to summarize the results:

    $ ./p0001-rev-list.sh
    [...]
    $ GIT_BUILD_DIR=/path/to/other/git ./p0001-rev-list.sh
    [...]
    $ ./aggregate.perl . /path/to/other/git ./p0001-rev-list.sh

aggregate.perl has the same invocation as 'run', it just does not run
anything beforehand.

You can set the following variables (also in your config.mak):

    GIT_PERF_REPEAT_COUNT
	Number of times a test should be repeated for best-of-N
	measurements.  Defaults to 3.

    GIT_PERF_MAKE_OPTS
	Options to use when automatically building a git tree for
	performance testing. E.g., -j6 would be useful. Passed
	directly to make as "make $GIT_PERF_MAKE_OPTS".

    GIT_PERF_MAKE_COMMAND
	An arbitrary command that'll be run in place of the make
	command, if set the GIT_PERF_MAKE_OPTS variable is
	ignored. Useful in cases where source tree changes might
	require issuing a different make command to different
	revisions.

	This can be (ab)used to monkeypatch or otherwise change the
	tree about to be built. Note that the build directory can be
	re-used for subsequent runs so the make command might get
	executed multiple times on the same tree, but don't count on
	any of that, that's an implementation detail that might change
	in the future.

    GIT_PERF_REPO
    GIT_PERF_LARGE_REPO
	Repositories to copy for the performance tests.  The normal
	repo should be at least git.git size.  The large repo should
	probably be about linux.git size for optimal results.
	Both default to the git.git you are running from.

You can also pass the options taken by ordinary git tests; the most
useful one is:

--root=<directory>::
	Create "trash" directories used to store all temporary data during
	testing under <directory>, instead of the t/ directory.
	Using this option with a RAM-based filesystem (such as tmpfs)
	can massively speed up the test suite.


Naming Tests
------------

The performance test files are named as:

	pNNNN-commandname-details.sh

where N is a decimal digit.  The same conventions for choosing NNNN as
for normal tests apply.


Writing Tests
-------------

The perf script starts much like a normal test script, except it
sources perf-lib.sh:

	#!/bin/sh
	#
	# Copyright (c) 2005 Junio C Hamano
	#

	test_description='xxx performance test'
	. ./perf-lib.sh

After that you will want to use some of the following:

	test_perf_fresh_repo    # sets up an empty repository
	test_perf_default_repo  # sets up a "normal" repository
	test_perf_large_repo    # sets up a "large" repository

	test_perf_default_repo sub  # ditto, in a subdir "sub"

        test_checkout_worktree  # if you need the worktree too

At least one of the first two is required!

You can use test_expect_success as usual. In both test_expect_success
and in test_perf, running "git" points to the version that is being
perf-tested. The $MODERN_GIT variable points to the git wrapper for the
currently checked-out version (i.e., the one that matches the t/perf
scripts you are running).  This is useful if your setup uses commands
that only work with newer versions of git than what you might want to
test (but obviously your new commands must still create a state that can
be used by the older version of git you are testing).

For actual performance tests, use

	test_perf 'descriptive string' '
		command1 &&
		command2
	'

test_perf spawns a subshell, for lack of better options.  This means
that

* you _must_ export all variables that you need in the subshell

* you _must_ flag all variables that you want to persist from the
  subshell with 'test_export':

	test_perf 'descriptive string' '
		foo=$(git rev-parse HEAD) &&
		test_export foo
	'

  The so-exported variables are automatically marked for export in the
  shell executing the perf test.  For your convenience, test_export is
  the same as export in the main shell.

  This feature relies on a bit of magic using 'set' and 'source'.
  While we have tried to make sure that it can cope with embedded
  whitespace and other special characters, it will not work with
  multi-line data.

Rather than tracking the performance by run-time as `test_perf` does, you
may also track output size by using `test_size`. The stdout of the
function should be a single numeric value, which will be captured and
shown in the aggregated output. For example:

	test_perf 'time foo' '
		./foo >foo.out
	'

	test_size 'output size'
		wc -c <foo.out
	'

might produce output like:

	Test                origin           HEAD
	-------------------------------------------------------------
	1234.1 time foo     0.37(0.79+0.02)  0.26(0.51+0.02) -29.7%
	1234.2 output size             4.3M             3.6M -14.7%

The item being measured (and its units) is up to the test; the context
and the test title should make it clear to the user whether bigger or
smaller numbers are better. Unlike test_perf, the test code will only be
run once, since output sizes tend to be more deterministic than timings.