f65d07fffa
Recent versions of the gcc and clang Address Sanitizer produce test failures related to regexec(). This triggers with gcc-10 and clang-8 (but not gcc-9 nor clang-7). Running: make CC=gcc-10 SANITIZE=address test results in failures in t4018, t3206, and t4062. The cause seems to be that when built with ASan, we use a different version of regexec() than normal. And this version doesn't understand the REG_STARTEND flag. Here's my evidence supporting that. The failure in t4062 is an ASan warning: expecting success of 4062.2 '-G matches': git diff --name-only -G "^(0{64}){64}$" HEAD^ >out && test 4096-zeroes.txt = "$(cat out)" ================================================================= ==672994==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x7fa76f672000 at pc 0x7fa7726f75b6 bp 0x7ffe41bdda70 sp 0x7ffe41bdd220 READ of size 4097 at 0x7fa76f672000 thread T0 #0 0x7fa7726f75b5 (/lib/x86_64-linux-gnu/libasan.so.6+0x4f5b5) #1 0x562ae0c9c40e in regexec_buf /home/peff/compile/git/git-compat-util.h:1117 #2 0x562ae0c9c40e in diff_grep /home/peff/compile/git/diffcore-pickaxe.c:52 #3 0x562ae0c9cc28 in pickaxe_match /home/peff/compile/git/diffcore-pickaxe.c:166 [...] In this case we're looking in a buffer which was mmap'd via reuse_worktree_file(), and whose size is 4096 bytes. But libasan's regex tries to look at byte 4097 anyway! If we tweak Git like this: diff --git a/diff.c b/diff.c index 8e2914c031..cfae60c120 100644 --- a/diff.c +++ b/diff.c @@ -3880,7 +3880,7 @@ static int reuse_worktree_file(struct index_state *istate, */ if (ce_uptodate(ce) || (!lstat(name, &st) && !ie_match_stat(istate, ce, &st, 0))) - return 1; + return 0; return 0; } to use a regular buffer (with a trailing NUL) instead of an mmap, then the complaint goes away. The other failures are actually diff output with an incorrect funcname header. If I instrument xdiff to show the funcname matching like so: diff --git a/xdiff-interface.c b/xdiff-interface.c index 8509f9ea22..f6c3dc1986 100644 --- a/xdiff-interface.c +++ b/xdiff-interface.c @@ -197,6 +197,7 @@ struct ff_regs { struct ff_reg { regex_t re; int negate; + char *printable; } *array; }; @@ -218,7 +219,12 @@ static long ff_regexp(const char *line, long len, for (i = 0; i < regs->nr; i++) { struct ff_reg *reg = regs->array + i; - if (!regexec_buf(®->re, line, len, 2, pmatch, 0)) { + int ret = regexec_buf(®->re, line, len, 2, pmatch, 0); + warning("regexec %s:\n regex: %s\n buf: %.*s", + ret == 0 ? "matched" : "did not match", + reg->printable, + (int)len, line); + if (!ret) { if (reg->negate) return -1; break; @@ -264,6 +270,7 @@ void xdiff_set_find_func(xdemitconf_t *xecfg, const char *value, int cflags) expression = value; if (regcomp(®->re, expression, cflags)) die("Invalid regexp to look for hunk header: %s", expression); + reg->printable = xstrdup(expression); free(buffer); value = ep + 1; } then when compiling with ASan and gcc-10, running the diff from t4018.66 produces this: $ git diff -U1 cpp-skip-access-specifiers warning: regexec did not match: regex: ^[ ]*[A-Za-z_][A-Za-z_0-9]*:[[:space:]]*($|/[/*]) buf: private: warning: regexec matched: regex: ^((::[[:space:]]*)?[A-Za-z_].*)$ buf: private: diff --git a/cpp-skip-access-specifiers b/cpp-skip-access-specifiers index 4d4a9db..ebd6f42 100644 --- a/cpp-skip-access-specifiers +++ b/cpp-skip-access-specifiers @@ -6,3 +6,3 @@ private: void DoSomething(); int ChangeMe; }; void DoSomething(); - int ChangeMe; + int IWasChanged; }; That first regex should match (and is negated, so it should be telling us _not_ to match "private:"). But it wouldn't if regexec() is looking at the whole buffer, and not just the length-limited line we've fed to regexec_buf(). So this is consistent again with REG_STARTEND being ignored. The correct output (compiling without ASan, or gcc-9 with Asan) looks like this: warning: regexec matched: regex: ^[ ]*[A-Za-z_][A-Za-z_0-9]*:[[:space:]]*($|/[/*]) buf: private: [...more lines that we end up not using...] warning: regexec matched: regex: ^((::[[:space:]]*)?[A-Za-z_].*)$ buf: class RIGHT : public Baseclass diff --git a/cpp-skip-access-specifiers b/cpp-skip-access-specifiers index 4d4a9db..ebd6f42 100644 --- a/cpp-skip-access-specifiers +++ b/cpp-skip-access-specifiers @@ -6,3 +6,3 @@ class RIGHT : public Baseclass void DoSomething(); - int ChangeMe; + int IWasChanged; }; So it really does seem like libasan's regex engine is ignoring REG_STARTEND. We should be able to work around it by compiling with NO_REGEX, which would use our local regexec(). But to make matters even more interesting, this isn't enough by itself. Because ASan has support from the compiler, it doesn't seem to intercept our call to regexec() at the dynamic library level. It actually recognizes when we are compiling a call to regexec() and replaces it with ASan-specific code at that point. And unlike most of our other compat code, where we might have git_mmap() or similar, the actual symbol name in the compiled compat/regex code is regexec(). So just compiling with NO_REGEX isn't enough; we still end up in libasan! We can work around that by having the preprocessor replace regexec with git_regexec (both in the callers and in the actual implementation), and we truly end up with a call to our custom regex code, even when compiling with ASan. That's probably a good thing to do anyway, as it means anybody looking at the symbols later (e.g., in a debugger) would have a better indication of which function is which. So we'll do the same for the other common regex functions (even though just regexec() is enough to fix this ASan problem). Signed-off-by: Jeff King <peff@peff.net> Signed-off-by: Junio C Hamano <gitster@pobox.com>
587 lines
21 KiB
C
587 lines
21 KiB
C
#include <stdio.h>
|
||
#include <stddef.h>
|
||
|
||
/* Definitions for data structures and routines for the regular
|
||
expression library.
|
||
Copyright (C) 1985,1989-93,1995-98,2000,2001,2002,2003,2005,2006,2008
|
||
Free Software Foundation, Inc.
|
||
This file is part of the GNU C Library.
|
||
|
||
The GNU C Library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
The GNU C Library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with the GNU C Library; if not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#ifndef _REGEX_H
|
||
#define _REGEX_H 1
|
||
|
||
#ifdef HAVE_STDDEF_H
|
||
#include <stddef.h>
|
||
#endif
|
||
|
||
#ifdef HAVE_SYS_TYPES_H
|
||
#include <sys/types.h>
|
||
#endif
|
||
|
||
#ifndef _LIBC
|
||
#define __USE_GNU 1
|
||
#endif
|
||
|
||
/* Allow the use in C++ code. */
|
||
#ifdef __cplusplus
|
||
extern "C" {
|
||
#endif
|
||
|
||
#define regcomp git_regcomp
|
||
#define regexec git_regexec
|
||
#define regerror git_regerror
|
||
#define regfree git_regfree
|
||
|
||
/* The following two types have to be signed and unsigned integer type
|
||
wide enough to hold a value of a pointer. For most ANSI compilers
|
||
ptrdiff_t and size_t should be likely OK. Still size of these two
|
||
types is 2 for Microsoft C. Ugh... */
|
||
typedef long int s_reg_t;
|
||
typedef unsigned long int active_reg_t;
|
||
|
||
/* The following bits are used to determine the regexp syntax we
|
||
recognize. The set/not-set meanings are chosen so that Emacs syntax
|
||
remains the value 0. The bits are given in alphabetical order, and
|
||
the definitions shifted by one from the previous bit; thus, when we
|
||
add or remove a bit, only one other definition need change. */
|
||
typedef unsigned long int reg_syntax_t;
|
||
|
||
#ifdef __USE_GNU
|
||
/* If this bit is not set, then \ inside a bracket expression is literal.
|
||
If set, then such a \ quotes the following character. */
|
||
# define RE_BACKSLASH_ESCAPE_IN_LISTS ((unsigned long int) 1)
|
||
|
||
/* If this bit is not set, then + and ? are operators, and \+ and \? are
|
||
literals.
|
||
If set, then \+ and \? are operators and + and ? are literals. */
|
||
# define RE_BK_PLUS_QM (RE_BACKSLASH_ESCAPE_IN_LISTS << 1)
|
||
|
||
/* If this bit is set, then character classes are supported. They are:
|
||
[:alpha:], [:upper:], [:lower:], [:digit:], [:alnum:], [:xdigit:],
|
||
[:space:], [:print:], [:punct:], [:graph:], and [:cntrl:].
|
||
If not set, then character classes are not supported. */
|
||
# define RE_CHAR_CLASSES (RE_BK_PLUS_QM << 1)
|
||
|
||
/* If this bit is set, then ^ and $ are always anchors (outside bracket
|
||
expressions, of course).
|
||
If this bit is not set, then it depends:
|
||
^ is an anchor if it is at the beginning of a regular
|
||
expression or after an open-group or an alternation operator;
|
||
$ is an anchor if it is at the end of a regular expression, or
|
||
before a close-group or an alternation operator.
|
||
|
||
This bit could be (re)combined with RE_CONTEXT_INDEP_OPS, because
|
||
POSIX draft 11.2 says that * etc. in leading positions is undefined.
|
||
We already implemented a previous draft which made those constructs
|
||
invalid, though, so we haven't changed the code back. */
|
||
# define RE_CONTEXT_INDEP_ANCHORS (RE_CHAR_CLASSES << 1)
|
||
|
||
/* If this bit is set, then special characters are always special
|
||
regardless of where they are in the pattern.
|
||
If this bit is not set, then special characters are special only in
|
||
some contexts; otherwise they are ordinary. Specifically,
|
||
* + ? and intervals are only special when not after the beginning,
|
||
open-group, or alternation operator. */
|
||
# define RE_CONTEXT_INDEP_OPS (RE_CONTEXT_INDEP_ANCHORS << 1)
|
||
|
||
/* If this bit is set, then *, +, ?, and { cannot be first in an re or
|
||
immediately after an alternation or begin-group operator. */
|
||
# define RE_CONTEXT_INVALID_OPS (RE_CONTEXT_INDEP_OPS << 1)
|
||
|
||
/* If this bit is set, then . matches newline.
|
||
If not set, then it doesn't. */
|
||
# define RE_DOT_NEWLINE (RE_CONTEXT_INVALID_OPS << 1)
|
||
|
||
/* If this bit is set, then . doesn't match NUL.
|
||
If not set, then it does. */
|
||
# define RE_DOT_NOT_NULL (RE_DOT_NEWLINE << 1)
|
||
|
||
/* If this bit is set, nonmatching lists [^...] do not match newline.
|
||
If not set, they do. */
|
||
# define RE_HAT_LISTS_NOT_NEWLINE (RE_DOT_NOT_NULL << 1)
|
||
|
||
/* If this bit is set, either \{...\} or {...} defines an
|
||
interval, depending on RE_NO_BK_BRACES.
|
||
If not set, \{, \}, {, and } are literals. */
|
||
# define RE_INTERVALS (RE_HAT_LISTS_NOT_NEWLINE << 1)
|
||
|
||
/* If this bit is set, +, ? and | aren't recognized as operators.
|
||
If not set, they are. */
|
||
# define RE_LIMITED_OPS (RE_INTERVALS << 1)
|
||
|
||
/* If this bit is set, newline is an alternation operator.
|
||
If not set, newline is literal. */
|
||
# define RE_NEWLINE_ALT (RE_LIMITED_OPS << 1)
|
||
|
||
/* If this bit is set, then `{...}' defines an interval, and \{ and \}
|
||
are literals.
|
||
If not set, then `\{...\}' defines an interval. */
|
||
# define RE_NO_BK_BRACES (RE_NEWLINE_ALT << 1)
|
||
|
||
/* If this bit is set, (...) defines a group, and \( and \) are literals.
|
||
If not set, \(...\) defines a group, and ( and ) are literals. */
|
||
# define RE_NO_BK_PARENS (RE_NO_BK_BRACES << 1)
|
||
|
||
/* If this bit is set, then \<digit> matches <digit>.
|
||
If not set, then \<digit> is a back-reference. */
|
||
# define RE_NO_BK_REFS (RE_NO_BK_PARENS << 1)
|
||
|
||
/* If this bit is set, then | is an alternation operator, and \| is literal.
|
||
If not set, then \| is an alternation operator, and | is literal. */
|
||
# define RE_NO_BK_VBAR (RE_NO_BK_REFS << 1)
|
||
|
||
/* If this bit is set, then an ending range point collating higher
|
||
than the starting range point, as in [z-a], is invalid.
|
||
If not set, then when ending range point collates higher than the
|
||
starting range point, the range is ignored. */
|
||
# define RE_NO_EMPTY_RANGES (RE_NO_BK_VBAR << 1)
|
||
|
||
/* If this bit is set, then an unmatched ) is ordinary.
|
||
If not set, then an unmatched ) is invalid. */
|
||
# define RE_UNMATCHED_RIGHT_PAREN_ORD (RE_NO_EMPTY_RANGES << 1)
|
||
|
||
/* If this bit is set, succeed as soon as we match the whole pattern,
|
||
without further backtracking. */
|
||
# define RE_NO_POSIX_BACKTRACKING (RE_UNMATCHED_RIGHT_PAREN_ORD << 1)
|
||
|
||
/* If this bit is set, do not process the GNU regex operators.
|
||
If not set, then the GNU regex operators are recognized. */
|
||
# define RE_NO_GNU_OPS (RE_NO_POSIX_BACKTRACKING << 1)
|
||
|
||
/* If this bit is set, a syntactically invalid interval is treated as
|
||
a string of ordinary characters. For example, the ERE 'a{1' is
|
||
treated as 'a\{1'. */
|
||
# define RE_INVALID_INTERVAL_ORD (RE_NO_GNU_OPS << 1)
|
||
|
||
/* If this bit is set, then ignore case when matching.
|
||
If not set, then case is significant. */
|
||
# define RE_ICASE (RE_INVALID_INTERVAL_ORD << 1)
|
||
|
||
/* This bit is used internally like RE_CONTEXT_INDEP_ANCHORS but only
|
||
for ^, because it is difficult to scan the regex backwards to find
|
||
whether ^ should be special. */
|
||
# define RE_CARET_ANCHORS_HERE (RE_ICASE << 1)
|
||
|
||
/* If this bit is set, then \{ cannot be first in an bre or
|
||
immediately after an alternation or begin-group operator. */
|
||
# define RE_CONTEXT_INVALID_DUP (RE_CARET_ANCHORS_HERE << 1)
|
||
|
||
/* If this bit is set, then no_sub will be set to 1 during
|
||
re_compile_pattern. */
|
||
#define RE_NO_SUB (RE_CONTEXT_INVALID_DUP << 1)
|
||
#endif
|
||
|
||
/* This global variable defines the particular regexp syntax to use (for
|
||
some interfaces). When a regexp is compiled, the syntax used is
|
||
stored in the pattern buffer, so changing this does not affect
|
||
already-compiled regexps. */
|
||
extern reg_syntax_t re_syntax_options;
|
||
|
||
#ifdef __USE_GNU
|
||
/* Define combinations of the above bits for the standard possibilities.
|
||
(The [[[ comments delimit what gets put into the Texinfo file, so
|
||
don't delete them!) */
|
||
/* [[[begin syntaxes]]] */
|
||
#define RE_SYNTAX_EMACS 0
|
||
|
||
#define RE_SYNTAX_AWK \
|
||
(RE_BACKSLASH_ESCAPE_IN_LISTS | RE_DOT_NOT_NULL \
|
||
| RE_NO_BK_PARENS | RE_NO_BK_REFS \
|
||
| RE_NO_BK_VBAR | RE_NO_EMPTY_RANGES \
|
||
| RE_DOT_NEWLINE | RE_CONTEXT_INDEP_ANCHORS \
|
||
| RE_UNMATCHED_RIGHT_PAREN_ORD | RE_NO_GNU_OPS)
|
||
|
||
#define RE_SYNTAX_GNU_AWK \
|
||
((RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS \
|
||
| RE_INVALID_INTERVAL_ORD) \
|
||
& ~(RE_DOT_NOT_NULL | RE_CONTEXT_INDEP_OPS \
|
||
| RE_CONTEXT_INVALID_OPS ))
|
||
|
||
#define RE_SYNTAX_POSIX_AWK \
|
||
(RE_SYNTAX_POSIX_EXTENDED | RE_BACKSLASH_ESCAPE_IN_LISTS \
|
||
| RE_INTERVALS | RE_NO_GNU_OPS \
|
||
| RE_INVALID_INTERVAL_ORD)
|
||
|
||
#define RE_SYNTAX_GREP \
|
||
(RE_BK_PLUS_QM | RE_CHAR_CLASSES \
|
||
| RE_HAT_LISTS_NOT_NEWLINE | RE_INTERVALS \
|
||
| RE_NEWLINE_ALT)
|
||
|
||
#define RE_SYNTAX_EGREP \
|
||
(RE_CHAR_CLASSES | RE_CONTEXT_INDEP_ANCHORS \
|
||
| RE_CONTEXT_INDEP_OPS | RE_HAT_LISTS_NOT_NEWLINE \
|
||
| RE_NEWLINE_ALT | RE_NO_BK_PARENS \
|
||
| RE_NO_BK_VBAR)
|
||
|
||
#define RE_SYNTAX_POSIX_EGREP \
|
||
(RE_SYNTAX_EGREP | RE_INTERVALS | RE_NO_BK_BRACES \
|
||
| RE_INVALID_INTERVAL_ORD)
|
||
|
||
/* P1003.2/D11.2, section 4.20.7.1, lines 5078ff. */
|
||
#define RE_SYNTAX_ED RE_SYNTAX_POSIX_BASIC
|
||
|
||
#define RE_SYNTAX_SED RE_SYNTAX_POSIX_BASIC
|
||
|
||
/* Syntax bits common to both basic and extended POSIX regex syntax. */
|
||
#define _RE_SYNTAX_POSIX_COMMON \
|
||
(RE_CHAR_CLASSES | RE_DOT_NEWLINE | RE_DOT_NOT_NULL \
|
||
| RE_INTERVALS | RE_NO_EMPTY_RANGES)
|
||
|
||
#define RE_SYNTAX_POSIX_BASIC \
|
||
(_RE_SYNTAX_POSIX_COMMON | RE_BK_PLUS_QM | RE_CONTEXT_INVALID_DUP)
|
||
|
||
/* Differs from ..._POSIX_BASIC only in that RE_BK_PLUS_QM becomes
|
||
RE_LIMITED_OPS, i.e., \? \+ \| are not recognized. Actually, this
|
||
isn't minimal, since other operators, such as \`, aren't disabled. */
|
||
#define RE_SYNTAX_POSIX_MINIMAL_BASIC \
|
||
(_RE_SYNTAX_POSIX_COMMON | RE_LIMITED_OPS)
|
||
|
||
#define RE_SYNTAX_POSIX_EXTENDED \
|
||
(_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
|
||
| RE_CONTEXT_INDEP_OPS | RE_NO_BK_BRACES \
|
||
| RE_NO_BK_PARENS | RE_NO_BK_VBAR \
|
||
| RE_CONTEXT_INVALID_OPS | RE_UNMATCHED_RIGHT_PAREN_ORD)
|
||
|
||
/* Differs from ..._POSIX_EXTENDED in that RE_CONTEXT_INDEP_OPS is
|
||
removed and RE_NO_BK_REFS is added. */
|
||
#define RE_SYNTAX_POSIX_MINIMAL_EXTENDED \
|
||
(_RE_SYNTAX_POSIX_COMMON | RE_CONTEXT_INDEP_ANCHORS \
|
||
| RE_CONTEXT_INVALID_OPS | RE_NO_BK_BRACES \
|
||
| RE_NO_BK_PARENS | RE_NO_BK_REFS \
|
||
| RE_NO_BK_VBAR | RE_UNMATCHED_RIGHT_PAREN_ORD)
|
||
/* [[[end syntaxes]]] */
|
||
|
||
/* Maximum number of duplicates an interval can allow. Some systems
|
||
(erroneously) define this in other header files, but we want our
|
||
value, so remove any previous define. */
|
||
# ifdef RE_DUP_MAX
|
||
# undef RE_DUP_MAX
|
||
# endif
|
||
/* If sizeof(int) == 2, then ((1 << 15) - 1) overflows. */
|
||
# define RE_DUP_MAX (0x7fff)
|
||
#endif
|
||
|
||
|
||
/* POSIX `cflags' bits (i.e., information for `regcomp'). */
|
||
|
||
/* If this bit is set, then use extended regular expression syntax.
|
||
If not set, then use basic regular expression syntax. */
|
||
#define REG_EXTENDED 1
|
||
|
||
/* If this bit is set, then ignore case when matching.
|
||
If not set, then case is significant. */
|
||
#define REG_ICASE (REG_EXTENDED << 1)
|
||
|
||
/* If this bit is set, then anchors do not match at newline
|
||
characters in the string.
|
||
If not set, then anchors do match at newlines. */
|
||
#define REG_NEWLINE (REG_ICASE << 1)
|
||
|
||
/* If this bit is set, then report only success or fail in regexec.
|
||
If not set, then returns differ between not matching and errors. */
|
||
#define REG_NOSUB (REG_NEWLINE << 1)
|
||
|
||
|
||
/* POSIX `eflags' bits (i.e., information for regexec). */
|
||
|
||
/* If this bit is set, then the beginning-of-line operator doesn't match
|
||
the beginning of the string (presumably because it's not the
|
||
beginning of a line).
|
||
If not set, then the beginning-of-line operator does match the
|
||
beginning of the string. */
|
||
#define REG_NOTBOL 1
|
||
|
||
/* Like REG_NOTBOL, except for the end-of-line. */
|
||
#define REG_NOTEOL (1 << 1)
|
||
|
||
/* Use PMATCH[0] to delimit the start and end of the search in the
|
||
buffer. */
|
||
#define REG_STARTEND (1 << 2)
|
||
|
||
|
||
/* If any error codes are removed, changed, or added, update the
|
||
`re_error_msg' table in regex.c. */
|
||
typedef enum
|
||
{
|
||
#if defined _XOPEN_SOURCE || defined __USE_XOPEN2K
|
||
REG_ENOSYS = -1, /* This will never happen for this implementation. */
|
||
#endif
|
||
|
||
REG_NOERROR = 0, /* Success. */
|
||
REG_NOMATCH, /* Didn't find a match (for regexec). */
|
||
|
||
/* POSIX regcomp return error codes. (In the order listed in the
|
||
standard.) */
|
||
REG_BADPAT, /* Invalid pattern. */
|
||
REG_ECOLLATE, /* Inalid collating element. */
|
||
REG_ECTYPE, /* Invalid character class name. */
|
||
REG_EESCAPE, /* Trailing backslash. */
|
||
REG_ESUBREG, /* Invalid back reference. */
|
||
REG_EBRACK, /* Unmatched left bracket. */
|
||
REG_EPAREN, /* Parenthesis imbalance. */
|
||
REG_EBRACE, /* Unmatched \{. */
|
||
REG_BADBR, /* Invalid contents of \{\}. */
|
||
REG_ERANGE, /* Invalid range end. */
|
||
REG_ESPACE, /* Ran out of memory. */
|
||
REG_BADRPT, /* No preceding re for repetition op. */
|
||
|
||
/* Error codes we've added. */
|
||
REG_EEND, /* Premature end. */
|
||
REG_ESIZE, /* Compiled pattern bigger than 2^16 bytes. */
|
||
REG_ERPAREN /* Unmatched ) or \); not returned from regcomp. */
|
||
} reg_errcode_t;
|
||
|
||
/* This data structure represents a compiled pattern. Before calling
|
||
the pattern compiler, the fields `buffer', `allocated', `fastmap',
|
||
`translate', and `no_sub' can be set. After the pattern has been
|
||
compiled, the `re_nsub' field is available. All other fields are
|
||
private to the regex routines. */
|
||
|
||
#ifndef RE_TRANSLATE_TYPE
|
||
# define __RE_TRANSLATE_TYPE unsigned char *
|
||
# ifdef __USE_GNU
|
||
# define RE_TRANSLATE_TYPE __RE_TRANSLATE_TYPE
|
||
# endif
|
||
#endif
|
||
|
||
#ifdef __USE_GNU
|
||
# define __REPB_PREFIX(name) name
|
||
#else
|
||
# define __REPB_PREFIX(name) __##name
|
||
#endif
|
||
|
||
struct re_pattern_buffer
|
||
{
|
||
/* Space that holds the compiled pattern. It is declared as
|
||
`unsigned char *' because its elements are sometimes used as
|
||
array indexes. */
|
||
unsigned char *__REPB_PREFIX(buffer);
|
||
|
||
/* Number of bytes to which `buffer' points. */
|
||
unsigned long int __REPB_PREFIX(allocated);
|
||
|
||
/* Number of bytes actually used in `buffer'. */
|
||
unsigned long int __REPB_PREFIX(used);
|
||
|
||
/* Syntax setting with which the pattern was compiled. */
|
||
reg_syntax_t __REPB_PREFIX(syntax);
|
||
|
||
/* Pointer to a fastmap, if any, otherwise zero. re_search uses the
|
||
fastmap, if there is one, to skip over impossible starting points
|
||
for matches. */
|
||
char *__REPB_PREFIX(fastmap);
|
||
|
||
/* Either a translate table to apply to all characters before
|
||
comparing them, or zero for no translation. The translation is
|
||
applied to a pattern when it is compiled and to a string when it
|
||
is matched. */
|
||
__RE_TRANSLATE_TYPE __REPB_PREFIX(translate);
|
||
|
||
/* Number of subexpressions found by the compiler. */
|
||
size_t re_nsub;
|
||
|
||
/* Zero if this pattern cannot match the empty string, one else.
|
||
Well, in truth it's used only in `re_search_2', to see whether or
|
||
not we should use the fastmap, so we don't set this absolutely
|
||
perfectly; see `re_compile_fastmap' (the `duplicate' case). */
|
||
unsigned __REPB_PREFIX(can_be_null) : 1;
|
||
|
||
/* If REGS_UNALLOCATED, allocate space in the `regs' structure
|
||
for `max (RE_NREGS, re_nsub + 1)' groups.
|
||
If REGS_REALLOCATE, reallocate space if necessary.
|
||
If REGS_FIXED, use what's there. */
|
||
#ifdef __USE_GNU
|
||
# define REGS_UNALLOCATED 0
|
||
# define REGS_REALLOCATE 1
|
||
# define REGS_FIXED 2
|
||
#endif
|
||
unsigned __REPB_PREFIX(regs_allocated) : 2;
|
||
|
||
/* Set to zero when `regex_compile' compiles a pattern; set to one
|
||
by `re_compile_fastmap' if it updates the fastmap. */
|
||
unsigned __REPB_PREFIX(fastmap_accurate) : 1;
|
||
|
||
/* If set, `re_match_2' does not return information about
|
||
subexpressions. */
|
||
unsigned __REPB_PREFIX(no_sub) : 1;
|
||
|
||
/* If set, a beginning-of-line anchor doesn't match at the beginning
|
||
of the string. */
|
||
unsigned __REPB_PREFIX(not_bol) : 1;
|
||
|
||
/* Similarly for an end-of-line anchor. */
|
||
unsigned __REPB_PREFIX(not_eol) : 1;
|
||
|
||
/* If true, an anchor at a newline matches. */
|
||
unsigned __REPB_PREFIX(newline_anchor) : 1;
|
||
};
|
||
|
||
typedef struct re_pattern_buffer regex_t;
|
||
|
||
/* Type for byte offsets within the string. POSIX mandates this. */
|
||
typedef int regoff_t;
|
||
|
||
|
||
#ifdef __USE_GNU
|
||
/* This is the structure we store register match data in. See
|
||
regex.texinfo for a full description of what registers match. */
|
||
struct re_registers
|
||
{
|
||
unsigned num_regs;
|
||
regoff_t *start;
|
||
regoff_t *end;
|
||
};
|
||
|
||
|
||
/* If `regs_allocated' is REGS_UNALLOCATED in the pattern buffer,
|
||
`re_match_2' returns information about at least this many registers
|
||
the first time a `regs' structure is passed. */
|
||
# ifndef RE_NREGS
|
||
# define RE_NREGS 30
|
||
# endif
|
||
#endif
|
||
|
||
|
||
/* POSIX specification for registers. Aside from the different names than
|
||
`re_registers', POSIX uses an array of structures, instead of a
|
||
structure of arrays. */
|
||
typedef struct
|
||
{
|
||
regoff_t rm_so; /* Byte offset from string's start to substring's start. */
|
||
regoff_t rm_eo; /* Byte offset from string's start to substring's end. */
|
||
} regmatch_t;
|
||
|
||
/* Declarations for routines. */
|
||
|
||
#ifdef __USE_GNU
|
||
/* Sets the current default syntax to SYNTAX, and return the old syntax.
|
||
You can also simply assign to the `re_syntax_options' variable. */
|
||
extern reg_syntax_t re_set_syntax (reg_syntax_t __syntax);
|
||
|
||
/* Compile the regular expression PATTERN, with length LENGTH
|
||
and syntax given by the global `re_syntax_options', into the buffer
|
||
BUFFER. Return NULL if successful, and an error string if not. */
|
||
extern const char *re_compile_pattern (const char *__pattern, size_t __length,
|
||
struct re_pattern_buffer *__buffer);
|
||
|
||
|
||
/* Compile a fastmap for the compiled pattern in BUFFER; used to
|
||
accelerate searches. Return 0 if successful and -2 if was an
|
||
internal error. */
|
||
extern int re_compile_fastmap (struct re_pattern_buffer *__buffer);
|
||
|
||
|
||
/* Search in the string STRING (with length LENGTH) for the pattern
|
||
compiled into BUFFER. Start searching at position START, for RANGE
|
||
characters. Return the starting position of the match, -1 for no
|
||
match, or -2 for an internal error. Also return register
|
||
information in REGS (if REGS and BUFFER->no_sub are nonzero). */
|
||
extern int re_search (struct re_pattern_buffer *__buffer, const char *__cstring,
|
||
int __length, int __start, int __range,
|
||
struct re_registers *__regs);
|
||
|
||
|
||
/* Like `re_search', but search in the concatenation of STRING1 and
|
||
STRING2. Also, stop searching at index START + STOP. */
|
||
extern int re_search_2 (struct re_pattern_buffer *__buffer,
|
||
const char *__string1, int __length1,
|
||
const char *__string2, int __length2, int __start,
|
||
int __range, struct re_registers *__regs, int __stop);
|
||
|
||
|
||
/* Like `re_search', but return how many characters in STRING the regexp
|
||
in BUFFER matched, starting at position START. */
|
||
extern int re_match (struct re_pattern_buffer *__buffer, const char *__cstring,
|
||
int __length, int __start, struct re_registers *__regs);
|
||
|
||
|
||
/* Relates to `re_match' as `re_search_2' relates to `re_search'. */
|
||
extern int re_match_2 (struct re_pattern_buffer *__buffer,
|
||
const char *__string1, int __length1,
|
||
const char *__string2, int __length2, int __start,
|
||
struct re_registers *__regs, int __stop);
|
||
|
||
|
||
/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
|
||
ENDS. Subsequent matches using BUFFER and REGS will use this memory
|
||
for recording register information. STARTS and ENDS must be
|
||
allocated with malloc, and must each be at least `NUM_REGS * sizeof
|
||
(regoff_t)' bytes long.
|
||
|
||
If NUM_REGS == 0, then subsequent matches should allocate their own
|
||
register data.
|
||
|
||
Unless this function is called, the first search or match using
|
||
PATTERN_BUFFER will allocate its own register data, without
|
||
freeing the old data. */
|
||
extern void re_set_registers (struct re_pattern_buffer *__buffer,
|
||
struct re_registers *__regs,
|
||
unsigned int __num_regs,
|
||
regoff_t *__starts, regoff_t *__ends);
|
||
#endif /* Use GNU */
|
||
|
||
#if defined _REGEX_RE_COMP || (defined _LIBC && defined __USE_BSD)
|
||
# ifndef _CRAY
|
||
/* 4.2 bsd compatibility. */
|
||
extern char *re_comp (const char *);
|
||
extern int re_exec (const char *);
|
||
# endif
|
||
#endif
|
||
|
||
/* GCC 2.95 and later have "__restrict"; C99 compilers have
|
||
"restrict", and "configure" may have defined "restrict". */
|
||
#ifndef __restrict
|
||
# if ! (2 < __GNUC__ || (2 == __GNUC__ && 95 <= __GNUC_MINOR__))
|
||
# if defined restrict || 199901L <= __STDC_VERSION__
|
||
# define __restrict restrict
|
||
# else
|
||
# define __restrict
|
||
# endif
|
||
# endif
|
||
#endif
|
||
/* gcc 3.1 and up support the [restrict] syntax. */
|
||
#ifndef __restrict_arr
|
||
# if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) \
|
||
&& !defined __GNUG__
|
||
# define __restrict_arr __restrict
|
||
# else
|
||
# define __restrict_arr
|
||
# endif
|
||
#endif
|
||
|
||
/* POSIX compatibility. */
|
||
extern int regcomp (regex_t *__restrict __preg,
|
||
const char *__restrict __pattern,
|
||
int __cflags);
|
||
|
||
extern int regexec (const regex_t *__restrict __preg,
|
||
const char *__restrict __cstring, size_t __nmatch,
|
||
regmatch_t __pmatch[__restrict_arr],
|
||
int __eflags);
|
||
|
||
extern size_t regerror (int __errcode, const regex_t *__restrict __preg,
|
||
char *__restrict __errbuf, size_t __errbuf_size);
|
||
|
||
extern void regfree (regex_t *__preg);
|
||
|
||
|
||
#ifdef __cplusplus
|
||
}
|
||
#endif /* C++ */
|
||
|
||
#endif /* regex.h */
|