Currently it is technically possible to let a submodule's git
directory point right into the git dir of a sibling submodule.
Example: the git directories of two submodules with the names `hippo`
and `hippo/hooks` would be `.git/modules/hippo/` and
`.git/modules/hippo/hooks/`, respectively, but the latter is already
intended to house the former's hooks.
In most cases, this is just confusing, but there is also a (quite
contrived) attack vector where Git can be fooled into mistaking remote
content for file contents it wrote itself during a recursive clone.
Let's plug this bug.
To do so, we introduce the new function `validate_submodule_git_dir()`
which simply verifies that no git dir exists for any leading directories
of the submodule name (if there are any).
Note: this patch specifically continues to allow sibling modules names
of the form `core/lib`, `core/doc`, etc, as long as `core` is not a
submodule name.
This fixes CVE-2019-1387.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Back in the DOS days, in the FAT file system, file names always
consisted of a base name of length 8 plus a file extension of length 3.
Shorter file names were simply padded with spaces to the full 8.3
format.
Later, the FAT file system was taught to support _also_ longer names,
with an 8.3 "short name" as primary file name. While at it, the same
facility allowed formerly illegal file names, such as `.git` (empty base
names were not allowed), which would have the "short name" `git~1`
associated with it.
For backwards-compatibility, NTFS supports alternative 8.3 short
filenames, too, even if starting with Windows Vista, they are only
generated on the system drive by default.
We addressed the problem that the `.git/` directory can _also_ be
accessed via `git~1/` (when short names are enabled) in 2b4c6efc82
(read-cache: optionally disallow NTFS .git variants, 2014-12-16), i.e.
since Git v1.9.5, by introducing the config setting `core.protectNTFS`
and enabling it by default on Windows.
In the meantime, Windows 10 introduced the "Windows Subsystem for Linux"
(short: WSL), i.e. a way to run Linux applications/distributions in a
thinly-isolated subsystem on Windows (giving rise to many a "2016 is the
Year of Linux on the Desktop" jokes). WSL is getting increasingly
popular, also due to the painless way Linux application can operate
directly ("natively") on files on Windows' file system: the Windows
drives are mounted automatically (e.g. `C:` as `/mnt/c/`).
Taken together, this means that we now have to enable the safe-guards of
Git v1.9.5 also in WSL: it is possible to access a `.git` directory
inside `/mnt/c/` via the 8.3 name `git~1` (unless short name generation
was disabled manually). Since regular Linux distributions run in WSL,
this means we have to enable `core.protectNTFS` at least on Linux, too.
To enable Services for Macintosh in Windows NT to store so-called
resource forks, NTFS introduced "Alternate Data Streams". Essentially,
these constitute additional metadata that are connected to (and copied
with) their associated files, and they are accessed via pseudo file
names of the form `filename:<stream-name>:<stream-type>`.
In a recent patch, we extended `core.protectNTFS` to also protect
against accesses via NTFS Alternate Data Streams, e.g. to prevent
contents of the `.git/` directory to be "tracked" via yet another
alternative file name.
While it is not possible (at least by default) to access files via NTFS
Alternate Data Streams from within WSL, the defaults on macOS when
mounting network shares via SMB _do_ allow accessing files and
directories in that way. Therefore, we need to enable `core.protectNTFS`
on macOS by default, too, and really, on any Operating System that can
mount network shares via SMB/CIFS.
A couple of approaches were considered for fixing this:
1. We could perform a dynamic NTFS check similar to the `core.symlinks`
check in `init`/`clone`: instead of trying to create a symbolic link
in the `.git/` directory, we could create a test file and try to
access `.git/config` via 8.3 name and/or Alternate Data Stream.
2. We could simply "flip the switch" on `core.protectNTFS`, to make it
"on by default".
The obvious downside of 1. is that it won't protect worktrees that were
clone with a vulnerable Git version already. We considered patching code
paths that check out files to check whether we're running on an NTFS
system dynamically and persist the result in the repository-local config
setting `core.protectNTFS`, but in the end decided that this solution
would be too fragile, and too involved.
The obvious downside of 2. is that everybody will have to "suffer" the
performance penalty incurred from calling `is_ntfs_dotgit()` on every
path, even in setups where.
After the recent work to accelerate `is_ntfs_dotgit()` in most cases,
it looks as if the time spent on validating ten million random
file names increases only negligibly (less than 20ms, well within the
standard deviation of ~50ms). Therefore the benefits outweigh the cost.
Another downside of this is that paths that might have been acceptable
previously now will be forbidden. Realistically, though, this is an
improvement because public Git hosters already would reject any `git
push` that contains such file names.
Note: There might be a similar problem mounting HFS+ on Linux. However,
this scenario has been considered unlikely and in light of the cost (in
the aforementioned benchmark, `core.protectHFS = true` increased the
time from ~440ms to ~610ms), it was decided _not_ to touch the default
of `core.protectHFS`.
This change addresses CVE-2019-1353.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Helped-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
We just safe-guarded `.git` against NTFS Alternate Data Stream-related
attack vectors, and now it is time to do the same for `.gitmodules`.
Note: In the added regression test, we refrain from verifying all kinds
of variations between short names and NTFS Alternate Data Streams: as
the new code disallows _all_ Alternate Data Streams of `.gitmodules`, it
is enough to test one in order to know that all of them are guarded
against.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
We need to be careful to follow proper quoting rules. For example, if an
argument contains spaces, we have to quote them. Double-quotes need to
be escaped. Backslashes need to be escaped, but only if they are
followed by a double-quote character.
We need to be _extra_ careful to consider the case where an argument
ends in a backslash _and_ needs to be quoted: in this case, we append a
double-quote character, i.e. the backslash now has to be escaped!
The current code, however, fails to recognize that, and therefore can
turn an argument that ends in a single backslash into a quoted argument
that now ends in an escaped double-quote character. This allows
subsequent command-line parameters to be split and part of them being
mistaken for command-line options, e.g. through a maliciously-crafted
submodule URL during a recursive clone.
Technically, we would not need to quote _all_ arguments which end in a
backslash _unless_ the argument needs to be quoted anyway. For example,
`test\` would not need to be quoted, while `test \` would need to be.
To keep the code simple, however, and therefore easier to reason about
and ensure its correctness, we now _always_ quote an argument that ends
in a backslash.
This addresses CVE-2019-1350.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Previously, this function was written without focusing on speed,
intending to make reviewing the code as easy as possible, to avoid any
bugs in this critical code.
Turns out: we can do much better on both accounts. With this patch, we
make it as fast as this developer can make it go:
- We avoid the call to `is_dir_sep()` and make all the character
comparisons explicit.
- We avoid the cost of calling `strncasecmp()` and unroll the test for
`.git` and `git~1`, not even using `tolower()` because it is faster to
compare against two constant values.
- We look for `.git` and `.git~1` first thing, and return early if not
found.
- We also avoid calling a separate function for detecting chains of
spaces and periods.
Each of these improvements has a noticeable impact on the speed of
`is_ntfs_dotgit()`.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Probably inspired by HFS' resource streams, NTFS supports "Alternate
Data Streams": by appending `:<stream-name>` to the file name,
information in addition to the file contents can be written and read,
information that is copied together with the file (unless copied to a
non-NTFS location).
These Alternate Data Streams are typically used for things like marking
an executable as having just been downloaded from the internet (and
hence not necessarily being trustworthy).
In addition to a stream name, a stream type can be appended, like so:
`:<stream-name>:<stream-type>`. Unless specified, the default stream
type is `$DATA` for files and `$INDEX_ALLOCATION` for directories. In
other words, `.git::$INDEX_ALLOCATION` is a valid way to reference the
`.git` directory!
In our work in Git v2.2.1 to protect Git on NTFS drives under
`core.protectNTFS`, we focused exclusively on NTFS short names, unaware
of the fact that NTFS Alternate Data Streams offer a similar attack
vector.
Let's fix this.
Seeing as it is better to be safe than sorry, we simply disallow paths
referring to *any* NTFS Alternate Data Stream of `.git`, not just
`::$INDEX_ALLOCATION`. This also simplifies the implementation.
This closes CVE-2019-1352.
Further reading about NTFS Alternate Data Streams:
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-fscc/c54dec26-1551-4d3a-a0ea-4fa40f848eb3
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
The config setting `core.protectNTFS` is specifically designed to work
not only on Windows, but anywhere, to allow for repositories hosted on,
say, Linux servers to be protected against NTFS-specific attack vectors.
As a consequence, `is_ntfs_dotgit()` manually splits backslash-separated
paths (but does not do the same for paths separated by forward slashes),
under the assumption that the backslash might not be a valid directory
separator on the _current_ Operating System.
However, the two callers, `verify_path()` and `fsck_tree()`, are
supposed to feed only individual path segments to the `is_ntfs_dotgit()`
function.
This causes a lot of duplicate scanning (and very inefficient scanning,
too, as the inner loop of `is_ntfs_dotgit()` was optimized for
readability rather than for speed.
Let's simplify the design of `is_ntfs_dotgit()` by putting the burden of
splitting the paths by backslashes as directory separators on the
callers of said function.
Consequently, the `verify_path()` function, which already splits the
path by directory separators, now treats backslashes as directory
separators _explicitly_ when `core.protectNTFS` is turned on, even on
platforms where the backslash is _not_ a directory separator.
Note that we have to repeat some code in `verify_path()`: if the
backslash is not a directory separator on the current Operating System,
we want to allow file names like `\`, but we _do_ want to disallow paths
that are clearly intended to cause harm when the repository is cloned on
Windows.
The `fsck_tree()` function (the other caller of `is_ntfs_dotgit()`) now
needs to look for backslashes in tree entries' names specifically when
`core.protectNTFS` is turned on. While it would be tempting to
completely disallow backslashes in that case (much like `fsck` reports
names containing forward slashes as "full paths"), this would be
overzealous: when `core.protectNTFS` is turned on in a non-Windows
setup, backslashes are perfectly valid characters in file names while we
_still_ want to disallow tree entries that are clearly designed to
exploit NTFS-specific behavior.
This simplification will make subsequent changes easier to implement,
such as turning `core.protectNTFS` on by default (not only on Windows)
or protecting against attack vectors involving NTFS Alternate Data
Streams.
Incidentally, this change allows for catching malicious repositories
that contain tree entries of the form `dir\.gitmodules` already on the
server side rather than only on the client side (and previously only on
Windows): in contrast to `is_ntfs_dotgit()`, the
`is_ntfs_dotgitmodules()` function already expects the caller to split
the paths by directory separators.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
In preparation to flipping the default on `core.protectNTFS`, let's have
some way to measure the speed impact of this config setting reliably
(and for comparison, the `core.protectHFS` config setting).
For now, this is a manual performance benchmark:
./t/helper/test-path-utils protect_ntfs_hfs [arguments...]
where the arguments are an optional number of file names to test with,
optionally followed by minimum and maximum length of the random file
names. The default values are one million, 3 and 20, respectively.
Just like `sqrti()` in `bisect.c`, we introduce a very simple function
to approximation the square root of a given value, in order to avoid
having to introduce the first user of `<math.h>` in Git's source code.
Note: this is _not_ implemented as a Unix shell script in t/perf/
because we really care about _very_ precise timings here, and Unix shell
scripts are simply unsuited for precise and consistent benchmarking.
Signed-off-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
This patch series fixes an issue where Git could formerly have been
tricked into creating a `.git` file with an unexpected (and therefore
unprotected) NTFS short name.
Incidentally, it also fixes an issue where a tree entry containing a
backslash could be tricked into following a symbolic link, i.e. Git
could be tricked into writing files outside the worktree.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
The `--export-marks` option of `git fast-import` is exposed also via the
in-stream command `feature export-marks=...` and it allows overwriting
arbitrary paths.
This topic branch prevents the in-stream version, to prevent arbitrary
file accesses by `git fast-import` streams coming from untrusted sources
(e.g. in remote helpers that are based on `git fast-import`).
This fixes CVE-2019-1348.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Previously, this function was completely undocumented. It is worth,
though, to explain what is going on, as it is not really obvious at all.
Suggested-by: Garima Singh <garima.singh@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
The backslash character is not a valid part of a file name on Windows.
Hence it is dangerous to allow writing files that were unpacked from
tree objects, when the stored file name contains a backslash character:
it will be misinterpreted as directory separator.
This not only causes ambiguity when a tree contains a blob `a\b` and a
tree `a` that contains a blob `b`, but it also can be used as part of an
attack vector to side-step the careful protections against writing into
the `.git/` directory during a clone of a maliciously-crafted
repository.
Let's prevent that, addressing CVE-2019-1354.
Note: we guard against backslash characters in tree objects' file names
_only_ on Windows (because on other platforms, even on those where NTFS
volumes can be mounted, the backslash character is _not_ a directory
separator), and _only_ when `core.protectNTFS = true` (because users
might need to generate tree objects for other platforms, of course
without touching the worktree, e.g. using `git update-index
--cacheinfo`).
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
In addition to preventing `.git` from being tracked by Git, on Windows
we also have to prevent `git~1` from being tracked, as the default NTFS
short name (also known as the "8.3 filename") for the file name `.git`
is `git~1`, otherwise it would be possible for malicious repositories to
write directly into the `.git/` directory, e.g. a `post-checkout` hook
that would then be executed _during_ a recursive clone.
When we implemented appropriate protections in 2b4c6efc82 (read-cache:
optionally disallow NTFS .git variants, 2014-12-16), we had analyzed
carefully that the `.git` directory or file would be guaranteed to be
the first directory entry to be written. Otherwise it would be possible
e.g. for a file named `..git` to be assigned the short name `git~1` and
subsequently, the short name generated for `.git` would be `git~2`. Or
`git~3`. Or even `~9999999` (for a detailed explanation of the lengths
we have to go to protect `.gitmodules`, see the commit message of
e7cb0b4455 (is_ntfs_dotgit: match other .git files, 2018-05-11)).
However, by exploiting two issues (that will be addressed in a related
patch series close by), it is currently possible to clone a submodule
into a non-empty directory:
- On Windows, file names cannot end in a space or a period (for
historical reasons: the period separating the base name from the file
extension was not actually written to disk, and the base name/file
extension was space-padded to the full 8/3 characters, respectively).
Helpfully, when creating a directory under the name, say, `sub.`, that
trailing period is trimmed automatically and the actual name on disk
is `sub`.
This means that while Git thinks that the submodule names `sub` and
`sub.` are different, they both access `.git/modules/sub/`.
- While the backslash character is a valid file name character on Linux,
it is not so on Windows. As Git tries to be cross-platform, it
therefore allows backslash characters in the file names stored in tree
objects.
Which means that it is totally possible that a submodule `c` sits next
to a file `c\..git`, and on Windows, during recursive clone a file
called `..git` will be written into `c/`, of course _before_ the
submodule is cloned.
Note that the actual exploit is not quite as simple as having a
submodule `c` next to a file `c\..git`, as we have to make sure that the
directory `.git/modules/b` already exists when the submodule is checked
out, otherwise a different code path is taken in `module_clone()` that
does _not_ allow a non-empty submodule directory to exist already.
Even if we will address both issues nearby (the next commit will
disallow backslash characters in tree entries' file names on Windows,
and another patch will disallow creating directories/files with trailing
spaces or periods), it is a wise idea to defend in depth against this
sort of attack vector: when submodules are cloned recursively, we now
_require_ the directory to be empty, addressing CVE-2019-1349.
Note: the code path we patch is shared with the code path of `git
submodule update --init`, which must not expect, in general, that the
directory is empty. Hence we have to introduce the new option
`--force-init` and hand it all the way down from `git submodule` to the
actual `git submodule--helper` process that performs the initial clone.
Reported-by: Nicolas Joly <Nicolas.Joly@microsoft.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
As with export-marks in the previous commit, import-marks can access the
filesystem. This is significantly less dangerous than export-marks
because it only involves reading from arbitrary paths, rather than
writing them. However, it could still be surprising and have security
implications (e.g., exfiltrating data from a service that accepts
fast-import streams).
Let's lump it (and its "if-exists" counterpart) in with export-marks,
and enable the in-stream version only if --allow-unsafe-features is set.
Signed-off-by: Jeff King <peff@peff.net>
The fast-import stream command "feature export-marks=<path>" lets the
stream write marks to an arbitrary path. This may be surprising if you
are running fast-import against an untrusted input (which otherwise
cannot do anything except update Git objects and refs).
Let's disallow the use of this feature by default, and provide a
command-line option to re-enable it (you can always just use the
command-line --export-marks as well, but the in-stream version provides
an easy way for exporters to control the process).
This is a backwards-incompatible change, since the default is flipping
to the new, safer behavior. However, since the main users of the
in-stream versions would be import/export-based remote helpers, and
since we trust remote helpers already (which are already running
arbitrary code), we'll pass the new option by default when reading a
remote helper's stream. This should minimize the impact.
Note that the implementation isn't totally simple, as we have to work
around the fact that fast-import doesn't parse its command-line options
until after it has read any "feature" lines from the stream. This is how
it lets command-line options override in-stream. But in our case, it's
important to parse the new --allow-unsafe-features first.
There are three options for resolving this:
1. Do a separate "early" pass over the options. This is easy for us to
do because there are no command-line options that allow the
"unstuck" form (so there's no chance of us mistaking an argument
for an option), though it does introduce a risk of incorrect
parsing later (e.g,. if we convert to parse-options).
2. Move the option parsing phase back to the start of the program, but
teach the stream-reading code never to override an existing value.
This is tricky, because stream "feature" lines override each other
(meaning we'd have to start tracking the source for every option).
3. Accept that we might parse a "feature export-marks" line that is
forbidden, as long we don't _act_ on it until after we've parsed
the command line options.
This would, in fact, work with the current code, but only because
the previous patch fixed the export-marks parser to avoid touching
the filesystem.
So while it works, it does carry risk of somebody getting it wrong
in the future in a rather subtle and unsafe way.
I've gone with option (1) here as simple, safe, and unlikely to cause
regressions.
This fixes CVE-2019-1348.
Signed-off-by: Jeff King <peff@peff.net>
When we parse the --export-marks option, we don't immediately open the
file, but we do create any leading directories. This can be especially
confusing when a command-line option overrides an in-stream one, in
which case we'd create the leading directory for the in-stream file,
even though we never actually write the file.
Let's instead create the directories just before opening the file, which
means we'll create only useful directories. Note that this could change
the handling of relative paths if we chdir() in between, but we don't
actually do so; the only permanent chdir is from setup_git_directory()
which runs before either code path (potentially we should take the
pre-setup dir into account to avoid surprising the user, but that's an
orthogonal change).
The test just adapts the existing "override" test to use paths with
leading directories. This checks both that the correct directory is
created (which worked before but was not tested), and that the
overridden one is not (our new fix here).
While we're here, let's also check the error result of
safe_create_leading_directories(). We'd presumably notice any failure
immediately after when we try to open the file itself, but we can give a
more specific error message in this case.
Signed-off-by: Jeff King <peff@peff.net>
When asked to import marks from "subdir/file.marks", we create the
leading directory "subdir" if it doesn't exist. This makes no sense for
importing marks, where we only ever open the path for reading.
Most of the time this would be a noop, since if the marks file exists,
then the leading directories exist, too. But if it doesn't (e.g.,
because --import-marks-if-exists was used), then we'd create the useless
directory.
This dates back to 580d5f83e7 (fast-import: always create marks_file
directories, 2010-03-29). Even then it was useless, so it seems to have
been added in error alongside the --export-marks case (which _is_
helpful).
Signed-off-by: Jeff King <peff@peff.net>
We parse options like "--max-pack-size=" using skip_prefix(), which
makes sense to get at the bytes after the "=". However, we also parse
"--quiet" and "--stats" with skip_prefix(), which allows things like
"--quiet-nonsense" to behave like "--quiet".
This was a mistaken conversion in 0f6927c229 (fast-import: put option
parsing code in separate functions, 2009-12-04). Let's tighten this to
an exact match, which was the original intent.
Signed-off-by: Jeff King <peff@peff.net>
Our tests confirm that providing two "import-marks" options in a
fast-import stream is an error. However, the invoked command would fail
even without covering this case, because the marks files themselves do
not actually exist. Let's create the files to make sure we fail for the
right reason (we actually do, because the option parsing happens before
we open anything, but this future-proofs our test).
Signed-off-by: Jeff King <peff@peff.net>
During the six months of development of the Azure Pipelines support, the
patches went through quite a few iterations of changes, and to test
those iterations, a temporary build definition was used.
In the meantime, Azure Pipelines support made it to `master`, and we now
have a regular Azure Pipeline, installed via the common GitHub App
workflow. This new pipeline has a different name (git.git instead of
test-git.git), and a new ID (11 instead of 2).
Let's adjust the badge in our README to reflect that final shape of the
Azure Pipeline.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Change an unportable invocation of "dd" with count=0, that wanted to
truncate the commit-graph file. In POSIX it is unspecified what
happens when count=0 is provided[1]. The NetBSD "dd" behavior
differs from GNU (and seemingly other BSDs), which has left this test
broken since d2b86fbaa1 ("commit-graph: fix buffer read-overflow",
2019-01-15).
Copying from /dev/null would seek/truncate to seek=$zero_pos and
stop immediately after that (without being able to copy anything),
which is the right way to truncate the file.
1. http://pubs.opengroup.org/onlinepubs/9699919799/utilities/dd.html
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Helped-by: SZEDER Gábor <szeder.dev@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Fix widely supported but non-POSIX basic regex syntax introduced in
[1] and [2]. On GNU, NetBSD and FreeBSD the following works:
$ echo xy >f
$ grep 'xy\?' f; echo $?
xy
0
The same goes for "\+". The "?" and "+" syntax is not in the BRE
syntax, just in ERE, but on some implementations it can be invoked by
prefixing the meta-operator with "\", but not on OpenBSD:
$ uname -a
OpenBSD obsd.my.domain 6.2 GENERIC#132 amd64
$ grep --version
grep version 0.9
$ grep 'xy\?' f; echo $?
1
Let's fix this by moving to ERE syntax instead, where "?" and "+" are
universally supported:
$ grep -E 'xy?' f; echo $?
xy
0
1. 2ed5c8e174 ("describe: setup working tree for --dirty", 2019-02-03)
2. c801170b0c ("t6120: test for describe with a bare repository",
2019-02-03)
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
* mk/t5562-no-input-to-too-large-an-input-test:
t5562: do not depend on /dev/zero
Revert "t5562: replace /dev/zero with a pipe from generate_zero_bytes"
Some expected failures of git-http-backend leaves running its children
(receive-pack or upload-pack) which still hold opened descriptors
to act.err and with some probability they live long enough to write
there their failure messages after next test has already truncated
the files. This causes occasional failures of the test script.
Avoid the issue by using separated output and error file for each test,
apprending the test number to their name.
Reported-by: Carlo Arenas <carenas@gmail.com>
Helped-by: Carlo Arenas <carenas@gmail.com>
Helped-by: Junio C Hamano <gitster@pobox.com>
Signed-off-by: Max Kirillov <max@max630.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
In cc95bc2025 (t5562: replace /dev/zero with a pipe from
generate_zero_bytes, 2019-02-09), we replaced usage of /dev/zero (which
is not available on NonStop, apparently) by a Perl script snippet to
generate NUL bytes.
Sadly, it does not seem to work on NonStop, as t5562 reportedly hangs.
Worse, this also hangs in the Ubuntu 16.04 agents of the CI builds on
Azure Pipelines: for some reason, the Perl script snippet that is run
via `generate_zero_bytes` in t5562's 'CONTENT_LENGTH overflow ssite_t'
test case tries to write out an infinite amount of NUL bytes unless a
broken pipe is encountered, that snippet never encounters the broken
pipe, and keeps going until the build times out.
Oddly enough, this does not reproduce on the Windows and macOS agents,
nor in a local Ubuntu 18.04.
This developer tried for a day to figure out the exact circumstances
under which this hang happens, to no avail, the details remain a
mystery.
In the end, though, what counts is that this here change incidentally
fixes that hang (maybe also on NonStop?). Even more positively, it gets
rid of yet another unnecessary Perl invocation.
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
It was reported [1] that NonStop platform does not have /dev/zero.
The test uses /dev/zero as a dummy input. Passing case (http-backed
failed because of too big input size) should not be reading anything
from it. If http-backend would erroneously try to read any data
returning EOF probably would be even safer than providing some
meaningless data.
Replace /dev/zero with /dev/null to avoid issues with platforms which do
not have /dev/zero.
[1] https://public-inbox.org/git/20190209185930.5256-4-randall.s.becker@rogers.com/
Reported-by: Randall S. Becker <rsbecker@nexbridge.com>
Signed-off-by: Max Kirillov <max@max630.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
Revert cc95bc20 ("t5562: replace /dev/zero with a pipe from
generate_zero_bytes", 2019-02-09), as not feeding anything to the
command is a better way to test it.
'root commit' is usually translated as 'Root-Commit'. But in one
occasion it‘s translated as 'Basis-Commit' which is the translation
for 'base commit'.
Signed-off-by: Sebastian Staudt <koraktor@gmail.com>